Advertisement

Sensing the Environment

  • Jan Theunis
  • Matthias Stevens
  • Dick Botteldooren
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Recent advances in sensing technologies are leading to the development of miniaturised sensors that could be used as stand-alone devices, connected to smartphones or even embedded in smartphones. These sensors and apps create opportunities for more detailed environmental monitoring, as compared to official monitoring networks, and to involve the general public in environmental monitoring through participatory data collection and monitoring schemes. However, depending on the aspects of the environment that are monitored, technical complexity can differ quite a lot. Proper monitoring often requires important efforts in developing and validating sensing devices and in processing the collected data. This chapter deals with low-cost sensing devices and smartphone applications for physico-chemical environmental parameters, that can be used, possibly with some training, by non-specialised people, and as such create new opportunities for collection of novel data and improved monitoring of the environment. It starts with examples of novel sensing devices and apps for different environmental domains, and proceeds with a detailed overview of the possible added value, the technical challenges and future prospects in two specific domains that recently received a lot of interest, air quality and sound monitoring.

Keywords

Sound Level Black Carbon Concentration Sound Level Meter Field Calibration Mobile Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Afzal, A., Cioffi, N., Sabbatini, L., Torsi, L.: NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors Actuators B Chem. 171–172, 25–42 (2012). doi: 10.1016/j.snb.2012.05.026 CrossRefGoogle Scholar
  2. Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors Actuators B Chem. 173, 1–21 (2012). doi: 10.1016/j.snb.2012.07.092 CrossRefGoogle Scholar
  3. Becker, M., Caminiti, S., Fiorella, D., Francis, L., Gravino, P., et al.: Awareness and learning in participatory noise sensing. PLoS One 8(12), e81638 (2013)ADSCrossRefGoogle Scholar
  4. Boes, M., Oldoni, D., De Coensel, B., Botteldooren, D.: A biologically inspired recurrent neural network for sound source recognition incorporating auditory attention. In: 2013 International Joint Conference on Neural Networks (IJCNN). IEEE Catalogue Number: CFP13IJS-ART ISBN: 978-1-4673-6129-3, Dallas, 4–9 August 2013. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6691896
  5. Brunet, J., Garcia, V.P., Pauly, A., et al.: An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level. Sensors Actuators B Chem. 134, 632–639 (2008). doi: 10.1016/j.snb.2008.06.010
  6. Budde, M., El Masri, R., Riedel, T., Beigl, M.: Enabling low-cost particulate matter measurement for participatory sensing scenarios. In: Proceedings of the 12th International Conference on mobile ubiquitous multimedia (MUM 2013), Lulea (2013)Google Scholar
  7. Buonocore, J.J., Lee, H.J., Levy, J.I.: The influence of traffic on air quality in an urban neighborhood: a community-university partnership. Am. J. Public Health 99(S3), S629–S635 (2009)CrossRefGoogle Scholar
  8. Bur, C., Bastuck, M., Lloyd Spetz, A., et al.: Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics. Sensors Actuators B Chem. 193, 931–940 (2014). doi: 10.1016/j.snb.2013.12.030 CrossRefGoogle Scholar
  9. Burke, J.A., et al.: Participatory sensing. WSW’06: Workshop on World-Sensor-Web, held at ACM SenSys’06, Boulder, 31 October 2006 to 3 November 2006 (2006)Google Scholar
  10. Choi, S., Kim, N., Cha, H., Ha, R.: Micro sensor node for air pollutant monitoring: hardware and software issues. Sensors 9, 7970–7987 (2009)CrossRefGoogle Scholar
  11. D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput 9(5), 681–694 (2013)CrossRefGoogle Scholar
  12. De Vito, S., Piga, M., Martinotto, L., Di Francia, G.: CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sensors Actuators B Chem. 143, 182–191 (2009)CrossRefGoogle Scholar
  13. Delgado-Saborit, J.M.: Use of real-time sensors to characterise human exposures to combustion related pollutants. J. Environ. Monit. 14(7), 1824–1837 (2012)CrossRefGoogle Scholar
  14. Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., Willems, H., Torfs, R., Wets, G.: Impact of time-activity patterns on personal exposure to black carbon. Atmos. Environ. 45(21), 3594–3602 (2011)ADSCrossRefGoogle Scholar
  15. Dons, E., Int Panis, L., Van Poppel, M., et al.: Personal exposure to black carbon in transport microenvironments. Atmos. Environ. 55, 392–398 (2012)ADSCrossRefGoogle Scholar
  16. Dutta, P., Aoki, P., Kumar, A., Mainwaring, A., Myers, C., Willet, W., Woodruff, A.: Common sense: participatory urban sensing using a network of handheld air quality monitors. In: Proceedings of the 7th International Conference on Embedded Networked Sensor Systems, SenSys 2009, Berkeley, 4–6 November 2009. ACM 2009, ISBN 978-1-60558-519-2Google Scholar
  17. European Commission: Report from the Commission to the European Parliament and the Council on the implementation of the Environmental Noise Directive in accordance with Article 11 of Directive 2002/49/EC. Report COM(2011) 321 final (2011)Google Scholar
  18. European Environment Agency: Air quality in Europe — 2013 report. Copenhagen (2013)Google Scholar
  19. European Parliament and Council: Directive 2002/49/EC of 25 June 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Communities L 189(45), 12–26 (2002)Google Scholar
  20. Gerboles, M., Buzica, D.: Evaluation of micro-sensors to monitor ozone in ambient air. Ispra (2009)Google Scholar
  21. Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L.: Participatory air pollution monitoring using smartphones. In: 2nd International Workshop on Mobile Sensing, Beijing, 16–20 April 2012Google Scholar
  22. Holstius, D.M., Pillarisetti, A., Smith, K.R., Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. Discuss. 7, 605–632 (2014)CrossRefGoogle Scholar
  23. International Electrotechnical Commission: Electroacoustics – sound level meters – part 1: specifications (ed2.0). IEC 61672–1:2013 (2013a)Google Scholar
  24. International Electrotechnical Commission: Electroacoustics – sound level meters – part 2: pattern evaluation tests (ed2.0). IEC 61672–2:2013 (2013b)Google Scholar
  25. International Electrotechnical Commission: Electroacoustics – sound level meters – part 3: periodic tests (ed2.0). IEC 61672–3:2013 (2013c)Google Scholar
  26. International Organization for Standardization: Acoustics – method for calculating loudness level. ISO 532:1975 (1975)Google Scholar
  27. Ishigaki, Y., Matsumoto, Y., Ichimiya, R., Tanaka, K.: Ultra-low-cost radiation monitoring system utilizing smartphone-connected sensors developed with internet community. In: IEEE Sensors, 2012. IEEE Catalogue Number: CFP12SEN-USB ISBN: 978-1-4577-1765-9, Taipei, 28–31 October 2012. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6381733
  28. Janssen, N.A.H., Gerlofs-Nijland, M.E., Lanki, T., et al.: Health Effects of Black Carbon. WHO Regional Office for Europe, Copenhagen (2013)Google Scholar
  29. Kaplan, R., Kaplan, S.: The Experience of Nature: A Psychological Perspective. Cambridge University Press, Cambridge (1989). ISBN 0-521-34139-6Google Scholar
  30. Lam, K.C., Brown, A.L., Marafa, L., Chau, K.-C.: Human preference for countryside soundscapes. Acta Acust United Ac. 96(3), 463–471 (2010)CrossRefGoogle Scholar
  31. Lercher, P.: In: Kephalopoulos, S. (organiser), Schwela, D., Koistinen, K., Paviotti, M., Kotzias, D. (eds.) Proceedings of the International Workshop on “Combined Environmental Exposure: Noise, Air Pollution, Chemicals” organised by the JRC/IHC/PCE on 15–16 January 2007, Ispra. Office for Official Publications of the European Communities, Luxembourg (2007). EUR 22883 EN, ISBN: 978-92-79-06542-2, ISSN: 1018-5593Google Scholar
  32. Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sensors Actuators B Chem. 179, 32–45 (2013). doi: 10.1016/j.snb.2012.11.014 CrossRefGoogle Scholar
  33. Maisonneuve, N., Stevens, M., Ochab, B.: Participatory noise pollution monitoring using mobile phones. Inf. Polity 15(1–2), 51–71 (2010)Google Scholar
  34. Mead, M.I., Popoola, O.A.M., Stewart, G.B., et al.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 70, 186–203 (2013). doi: 10.1016/j.atmosenv.2012.11.060 ADSCrossRefGoogle Scholar
  35. Mills, J.B., Park, J.H., Peters, T.M.: Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols. J. Occup. Environ. Hyg. 10, 250–258 (2013)CrossRefGoogle Scholar
  36. Milton, R., Steed, A.: Mapping carbon monoxide using GPS tracked sensors. Environ. Monit. Assess. 124, 1–19 (2007)CrossRefGoogle Scholar
  37. Oldoni, D., De Coensel, B., Boes, M., Rademaker, M., De Baets, B., Van Renterghem, T., Botteldooren, D.: A computational model of auditory attention for use in soundscape research. J. Acoust. Soc. Am. 134(1), 852–861 (2013)ADSCrossRefGoogle Scholar
  38. Paprotny, I., Doering, F., Solomon, P.A., et al.: Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: design, fabrication, and experimental results. Sensors Actuators A Phys. 201, 506–516 (2013)CrossRefGoogle Scholar
  39. Peters, J., Theunis, J., Van Poppel, M., Berghmans, P.: Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol Air Qual. Res. 13, 509–522 (2013)Google Scholar
  40. Piedrahita, R., Xiang, J., Masson, N., Ortega, J., Collier, A., Jiang, Y.: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 7(10), 3325–3336 (2014)CrossRefGoogle Scholar
  41. Roche, N., Langton, S., Aughney, T., Russ, J.M., Marnell, F., Lynn, D., Catto, C.: A car-based monitoring method reveals new information on bat populations and distributions in Ireland. Anim. Conserv. 14(6), 642–651 (2011)CrossRefGoogle Scholar
  42. Roy, H.E., Pocock, M.J.O., Preston, C.D., Savage, J., Tweddle, J.C., Robinson, L.D.: Understanding citizen science and environmental monitoring (Vol. Final Report). NERC Centre for Ecology & Hydrology and Natural History Museum. Retrieved from http://www.ukeof.org.uk/documents/understanding-citizen-science.pdf (2012)
  43. Schweizer, I., Meurisch, C., Gedeon, J., et al.: Noisemap: multi-tier incentive mechanisms for participative urban sensing. In: Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones, pp. 9:1–9:5. ACM, New York (2012)Google Scholar
  44. Science Communication Unit - University of the West of England - Bristol: Science for environment policy in-depth report: environmental citizen science (2013)Google Scholar
  45. Steinle, S., Reis, S.C.E., Semple, S., Twigg, M.M., Braban, C.F., Leeson, S.R., Heal, M.R., Harrison, D., Lin, C., Wu, H.: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 508, 383–394 (2015)CrossRefGoogle Scholar
  46. Stevens, M.: Community memories for sustainable societies: the case of environmental noise. Ph.D. thesis, Vrije Universiteit Brussel. VUBPress/ASP Editions. http://brussense.be/phd-matthias (2012)
  47. Thomas, S., Villa-Lopez, F., Theunis, J., et al.: Particle system using solidly mounted resonators. IEEE Sens. J. 16, 2282–2289 (2016). doi: 10.1109/JSEN.2015.2512303 CrossRefGoogle Scholar
  48. U.S. Environmental Protection Agency: Our nation’s air - status and trends through 2010 (2012)Google Scholar
  49. Van Renterghem, T., Thomas, P., Dominguez, F., Dauwe, S., Touhafi, A., Dhoedt, B., Botteldooren, D.: On the ability of consumer electronics microphones for environmental noise monitoring. J. Environ. Monit. 13(3), 544–552 (2011)CrossRefGoogle Scholar
  50. Wallace, L.A., Wheeler, A.J., Kearney, J., et al.: Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J. Expo. Sci. Environ. Epidemiol. 21, 49–64 (2011). doi: 10.1038/jes.2010.15 CrossRefGoogle Scholar
  51. WHO Regional Office for Europe/European Commission Joint Research Centre: Burden of disease from environmental noise. Quantification of healthy life years lost in Europe (2011). ISBN: 978-92-890-0229-5Google Scholar
  52. WHO Regional Office for Europe: Review of evidence on health aspects of air pollution – REVIHAAP Project. Copenhagen (2013)Google Scholar
  53. WHO: Burden of disease from ambient air pollution for 2012. http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf?ua=1 (2014)
  54. Williams, D.E., Salmond, J., Yung, Y.F., et al.: Development of low-cost ozone and nitrogen dioxide measurement instruments suitable for use in an air quality monitoring network. In: 8th Annual IEEE Conference on Sensors (2009)Google Scholar
  55. Zappi, P., Bales, E., Park, J.-H., Griswold, W., Rosing, T.: Mobile sensing: from smartphones and wearables to big data. In: 2nd International Workshop on Mobile Sensing. Workshop co-located with IPSN’12 and CPSWEEK, IPSN 2012, Beijing, 16 April 2012. In: 11th ACM/IEEE Conference on Information Processing in Sensor Networks, Beijing, 16–19 April 2012. http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/papers/msipsn-park.pdf
  56. Zilli, D., Parson, O., Merrett, G.V., Rogers, A.: A hidden Markov model-based acoustic cicada detector for crowdsourced smartphone biodiversity monitoring. In: 23rd International Joint Conference on Artificial Intelligence, pp. 2945–2951. Beijing (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jan Theunis
    • 1
  • Matthias Stevens
    • 2
  • Dick Botteldooren
    • 3
  1. 1.VITO Flemish Institute for Technological ResearchMolBelgium
  2. 2.Extreme Citizen Science (ExCiteS) Research GroupUniversity College LondonLondonUK
  3. 3.Ghent UniversityGhentBelgium

Personalised recommendations