Human Sensors on the Move

  • Denzil Ferreira
  • Vassilis Kostakos
  • Immanuel Schweizer
Chapter

Abstract

In this section we provide an extensive summary of human sensors on the move, or mobile systems that are designed to collect data from smartphones that users carry in their everyday life. One can rely on people’s own mobile phones to collect data as they are at their close vicinity 90 % of the time (Dey et al. 2011). These devices have immense potential to collect rich data about people’s behaviour and habits, as well as their environment. In this chapter, we first outline the general idea of human sensor, then dive into some technical challenge before we present a number of systems to generate context on mobile phones.

References

  1. Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: The social fMRI: measuring, understanding, and designing social mechanisms in the real world. In: UbiComp ‘11: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 445–454. ACM (2011). doi:10.1145/2030112.2030171
  2. Balazinska, M., Castro, P.: Characterizing mobility and network usage in a corporate wireless local-area network. In: MobiSys ‘03: MobiSys, pp. 303–316. ACM (2003). doi:10.1145/1066116.1066127
  3. Banerjee, N., Rahmati, A., Corner, M.D., Rollins, S., Zhong, L.: Users and batteries: interactions and adaptive energy management in mobile systems. In: UbiComp ‘07: Proceedings of the 9th International Conference on Ubiquitous Computing, pp. 217–234. Springer, Berlin/Heidelberg (2007)Google Scholar
  4. Biegel, G., Cahill, V.: A framework for developing mobile, context-aware applications. In: PerCom, pp. 361–365. IEEE (2004). doi:10.1109/PERCOM.2004.1276875
  5. Brunette, W., Sodt, R., Chaudhri, R., Goel, M., Falcone, M., Van Orden, J., Borriello, G.: Open data kit sensors: a sensor integration framework for android at the application-level. In: MobiSys ‘12: Proceedings of Mobisys, pp. 351–364. ACM (2012). doi:10.1145/2307636.2307669
  6. Burke, J.A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: First Workshop on World-Sensor-Web: Mobile Device Centric Sensory Networks and Applications at Sensys ‘06 (2006)Google Scholar
  7. Carter, S., Mankoff, J., Heer, J.: Momento: support for situated ubicomp experimentation. In: CHI ‘07: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 125–134. ACM (2007). doi:10.1145/1240624.1240644
  8. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 6(6), 606–620 (2007). doi:10.1109/TMC.2007.1060 CrossRefGoogle Scholar
  9. D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput. 9(5), 681–694 (2013)CrossRefGoogle Scholar
  10. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2), 97–166 (2001). doi:10.1207/S15327051HCI16234_02 CrossRefGoogle Scholar
  11. Dey, A.K., Wac, K., Ferreira, D., Tassini, K., Hong, J.-H., Ramos, J.: Getting closer: an empirical investigation of the proximity of user to their smart phones. In: UbiComp ‘11: Ubicomp, pp. 163–172. ACM (2011). doi:10.1145/2030112.2030135
  12. Dickerson, R.F., Gorlin, E.I., Stankovic, J.A.: Empath: a continuous remote emotional health monitoring system for depressive illness. In: WH ‘11: Proceedings of the 2nd Conference on Wireless Health, pp. 5:1–5:10. ACM (2011). doi:10.1145/2077546.2077552
  13. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006). doi:10.1007/s00779-005-0046-3 CrossRefGoogle Scholar
  14. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Campbell, A.T.: BikeNet: a mobile sensing system for cyclist experience mapping. ACM Trans. Sen. Netw 6(1), 6:1–6:39 (2010). doi:10.1145/1653760.1653766 Google Scholar
  15. Falaki, H., Mahajan, R., Estrin, D.: SystemSens: a tool for monitoring usage in smartphone research deployments. In MobiArch ‘11: Proceedings of the Sixth International Workshop on Mobiarch, pp. 25–30. ACM (2011). doi:10.1145/1999916.1999923
  16. Ferreira, D.: Aware: a mobile context instrumentation middleware to collaboratively understand human behavior. Doctoral Dissertation, University of Oulu (2013)Google Scholar
  17. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones. In: MobiSys ‘07: Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, pp. 57–70. ACM (2007). doi:10.1145/1247660.1247670
  18. Ginger.io: Ginger.Io. [Web page] Retrieved from http://ginger.io/ (2012)
  19. Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L.: Participatory air pollution monitoring using smartphones. In: 2nd International Workshop on Mobile Sensing. ACM (2012)Google Scholar
  20. Kansal, A., Saponas, S., Brush, A.J., McKinley, K.S., Mytkowicz, T., Ziola, R.: The latency, accuracy, and battery (LAB) abstraction: programmer productivity and energy efficiency for continuous mobile context sensing. ACM SIGPLAN Not. 48(10), 661–676 (2013)CrossRefGoogle Scholar
  21. Khan, W.Z., Xiang, Y., Aalsalem, M.Y., Arshad, Q.: Mobile phone sensing systems: a survey. IEEE Commun. Surv. Tutorials 15(1), 402–427 (2013)CrossRefGoogle Scholar
  22. Kim, D.H., Kim, Y., Estrin, D., Srivastava, M.B.: SensLoc: sensing everyday places and paths using less energy. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pp. 43–56. ACM (2010)Google Scholar
  23. Kindberg, T., Zhang, K.: Secure spontaneous device association. In: UbiComp 2003: Ubiquitous Computing, pp. 124–131. Springer, Berlin/Heidelberg (2003). doi:10.1007/978-3-540-39653-6_9
  24. Korpipää, P., Häkkilä, J., Kela, J., Ronkainen, S., Känsälä, I.: Utilising context ontology in mobile device application personalisation. In: MUM ‘04: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia, pp. 133–140. ACM (2004). doi:10.1145/1052380.1052399
  25. Kostakos, V., O’Neill, E., Penn, A.: Designing urban pervasive systems. Computer 39(9), 52–59 (2006). doi:10.1109/MC.2006.303 CrossRefGoogle Scholar
  26. Kostakos, V., O’Neill, E., Penn, A., Roussos, G., Papadongonas, D.: Brief encounters: sensing, modeling and visualizing urban mobility and copresence networks. ACM TOCHI 17(1), 2 (2010). doi:10.1145/1721831.1721833 CrossRefGoogle Scholar
  27. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)CrossRefGoogle Scholar
  28. McNett, M., Voelker, G.M.: Access and mobility of wireless PDA users. Mob. Comput. Commun. Rev. 9(2), 40–55 (2005). doi:10.1145/1072989.1072995 CrossRefGoogle Scholar
  29. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., … Campbell, A.T.: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: SenSys ‘08: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 337–350. ACM (2008). doi:10.1145/1460412.1460445
  30. Nacci, A.A., Trovò, F., Maggi, F., Ferroni, M., Cazzola, A., Sciuto, D., Santambrogio, M.D.: Adaptive and flexible smartphone power modeling. Mob. Netw. Appl. 18(5), 600–609 (2013)CrossRefGoogle Scholar
  31. Nicolai, T., Yoneki, E., Behrens, N., Kenn, H.: Exploring social context with the wireless rope. In: OTM, pp. 874–883 (2006). doi:10.1007/11915034_112
  32. O’Neill, E., Kostakos, V., Kindberg, T., Schiek, A., Penn, A., Fraser, D., Jones, T.: Instrumenting the city: developing methods for observing and understanding the digital cityscape. In: Ubicomp, pp. 315–332. Springer (2006). doi:10.1007/11853565_19
  33. Perttunen, M., Kostakos, V., Riekki, J., Ojala, T.: Spatio-temporal patterns link your digital identities. Comput. Environ. Urban Syst., 1–10 (2014). doi:10.1016/j.compenvurbsys.2013.12.004
  34. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: EmotionSense: a mobile phones based adaptive platform for experimental social psychology research. In: Ubicomp ‘10: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 281–290. ACM (2010). doi:10.1145/1864349.1864393
  35. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone: a prototyping platform for context-aware mobile applications. IEEE Pervasive Comput. 4(2), 51–59 (2005). doi:10.1109/MPRV.2005.29 CrossRefGoogle Scholar
  36. Ramanathan, N., Alquaddoomi, F., Falaki, H., George, D., Hsieh, C., Jenkins, J., Estrin, D.: Ohmage: an open mobile system for activity and experience sampling. In: PervasiveHealth, pp. 203–204. IEEE (2012)Google Scholar
  37. Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory urban noise mapping system. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 105–116. ACM (2010)Google Scholar
  38. Rathnayake, U., Petander, H., Ott, M., Seneviratne, A.: EMUNE: architecture for mobile data transfer scheduling with network availability predictions. Mob. Netw. Appl. 17(2), 216–233 (2012)CrossRefGoogle Scholar
  39. Schweizer, I., Bärtl, R., Schulz, A., Probst, F., Mühläuser, M.: NoiseMap-real-time participatory noise maps. In: Proceedings of the 2nd International Workshop on Sensing Applications on Mobile Phones (PhoneSense’11), pp. 1–5 (2011)Google Scholar
  40. Schweizer, I., Bärtl, R., Schmidt, B., Kaup, F., Mühlhäuser, M.: Kraken.me mobile: the energy footprint of mobile tracking. In: Proceedings of the 6th International Conference on Mobile Computing, Applications and Services (MobiCASE), pp. 82–89. IEEE (2014)Google Scholar
  41. van Sinderen, M.J., van Halteren, A.T., Wegdam, M., Meeuwissen, H.B., Eertink, E.H.: Supporting context-aware mobile applications: an infrastructure approach. IEEE Commun. Mag. 44(9), 96–104 (2006). doi:10.1109/MCOM.2006.1705985 CrossRefGoogle Scholar
  42. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: understanding smartphone usage. In: Mobile and Ubiquitous Systems: Computing, Networking, and Services, pp. 195–208. Springer (2014)Google Scholar
  43. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N.: A framework of energy efficient mobile sensing for automatic user state recognition. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 179–192. ACM (2009)Google Scholar
  44. Weiser, M.: The computer for the 21st century. ACM SIGMOBILE Mob. Comput. Commun. Rev. 3(3), 3–11 (1999). doi:10.1145/329124.329126 CrossRefGoogle Scholar
  45. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 105–114. ACM (2010)Google Scholar
  46. Zhuang, Z., Kim, K.H., Singh, J.P.: Improving energy efficiency of location sensing on smartphones. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, pp. 315–330. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Denzil Ferreira
    • 1
  • Vassilis Kostakos
    • 1
  • Immanuel Schweizer
    • 2
  1. 1.Center for Ubiquitous ComputingUniversity of OuluOuluFinland
  2. 2.Telecooperation Lab, Department of Computer ScienceTechnical UniversityDarmstadtGermany

Personalised recommendations