Enforcing Privacy in Distributed Multi-Domain Network Anomaly Detection

  • Christian CallegariEmail author
  • Stefano Giordano
  • Michele Pagano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9408)


In this paper, we propose a distributed PCA-based method for detecting anomalies in the network traffic, which, by means of multi-party computation techniques, is also able to face the different privacy constraints that arise in a multi-domain network scenario, while preserving the same performance of the centralised implementation (with only a limited overhead).


Secret Share Anomaly Detection Secret Share Scheme Central Engine Secure MultiParty Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Callegari, C., et al.: A methodological overview on anomaly detection. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.) Data Traffic Monitoring and Analysis. LNCS, vol. 7754, pp. 148–183. Springer, Heidelberg (2013) Google Scholar
  2. 2.
    Patcha, A., Park, J.: An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks 51 (2007)Google Scholar
  3. 3.
    Lakhina, A.: Diagnosing network-wide traffic anomalies. In: ACM SIGCOMM, pp 219–230 (2004)Google Scholar
  4. 4.
    Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature. In: ACM SIGCOMM (2005)Google Scholar
  5. 5.
    Chatzigiannakis, V., Papavassiliou, S., Androulidakis, G.: Improving network anomaly detection effectiveness via an integrated multi-metric-multi-link (m\(^{\text{3 }}\)l) PCA-based approach. Security and Communication Networks 2(3), 289–304 (2009)CrossRefGoogle Scholar
  6. 6.
    Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., Pepe, T.: A novel multi time-scales PCA-based anomaly detection system. In: 2010 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS) (2010)Google Scholar
  7. 7.
    Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., Pepe, T.: Improving PCA-based anomaly detection by using multiple time scale analysis and Kullback-Leibler divergence. International Journal of Communication Systems (2012) n/a-n/aGoogle Scholar
  8. 8.
    Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., Pepe, T.: A novel PCA-based network anomaly detection. In: ICC, pp. 1–5 (2011)Google Scholar
  9. 9.
    Liu, Y., Zhang, L., Guan, Y.: Sketch-based streaming PCA algorithm for network-wide traffic anomaly detection. In: Proceedings of International Conference on Distributed Computing Systems (2010)Google Scholar
  10. 10.
    Dusi, M., Vitale, C., Niccolini, S., Callegari, C.: Distributed PCA-based anomaly detection in telephone networks through legitimate-user profiling. In: ICC, pp. 1107–1112 (2012)Google Scholar
  11. 11.
    Zhang, P., Huang, X., Sun, X., Wang, H., Ma, Y.: Privacy-preserving anomaly detection across multi-domain networks. In: FSKD, pp. 1066–1070. IEEE (2012)Google Scholar
  12. 12.
    Cramer, Ronald: Introduction to Secure Computation. In: Damgård, Ivan Bjerre (ed.) Lectures on Data Security. LNCS, vol. 1561, pp. 16–62. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  13. 13.
    Karr, A.F., Lin, X., Reiter, J.P., Sanil, A.P.: Privacy-preserving analysis of vertically partitioned data using secure matrix products. Journal of Official Statistics 25(1), 125–138 (2009)Google Scholar
  14. 14.
    Schweller, R., Gupta, A., Parsons, E., Chen, Y.: Reversible sketches for efficient and accurate change detection over network data streams. In: Proceedings of the ACM SIGCOMM Conference on Internet Measurement, IMC 2004, pp. 207–212. ACM, New York (2004)Google Scholar
  15. 15.
    The Internet2 Network.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Callegari
    • 1
    • 2
    Email author
  • Stefano Giordano
    • 1
    • 2
  • Michele Pagano
    • 1
    • 2
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly
  2. 2.CNITPisaItaly

Personalised recommendations