Radiocarbon and the Global Carbon Cycle

  • E. A. G. Schuur
  • S. E. Trumbore
  • E. R. M. Druffel
  • J. R. Southon
  • A. Steinhof
  • R. E. Taylor
  • J. C. Turnbull


This chapter begins by summarizing some of the recent changes in the global carbon (C) cycle, contrasting patterns that exist today with those of the past several hundred years. With this backdrop, the chapter then examines the overall distribution of C isotopes as a framework for understanding the global C cycle and the changes that are happening to it. These important themes are followed in more detail throughout other chapters of this book, giving insight into C cycling from small to large scales and through all of the important Earth reservoirs.


Dissolve Inorganic Carbon Particulate Organic Carbon Last Glacial Maximum Radioactive Decay Accelerator Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnold, J., and W. Libby. 1949. Age determinations by radiocarbon content—Checks with samples of known age. Science 110: 678–680.CrossRefGoogle Scholar
  2. Augustin, L., C. Barbante, P. Barnes, J. Barnola, M. Bigler, E. Castellano, O. Cattani, J. Chappellaz, D. DahlJensen, B. Delmonte, G. Dreyfus, G. Durand, S. Falourd, H. Fischer, J. Fluckiger, M. Hansson, P. Huybrechts, R. Jugie, S. Johnsen, J. Jouzel, P. Kaufmann, J. Kipfstuhl, F. Lambert, V. Lipenkov, G. Littot, A. Longinelli, R. Lorrain, V. Maggi, V. Masson-Delmotte, H. Miller, R. Mulvaney, J. Oerlemans, H. Oerter, G. Orombelli, F. Parrenin, D. Peel, J. Petit, D. Raynaud, C. Ritz, U. Ruth, J. Schwander, U. Siegenthaler, R. Souchez, B. Stauffer, J. Steffensen, B. Stenni, T. Stocker, I. Tabacco, R. Udisti, R. van de Wal, M. van den Broeke, J. Weiss, F. Wilhelms, J. Winther, E. Wolff, M. Zucchelli, E.C. Members, and E.C. Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429(6992): 623–628.CrossRefGoogle Scholar
  3. Ballantyne, A., C. Alden, J. Miller, P. Tans, and J. White. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488: 70–72.CrossRefGoogle Scholar
  4. Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rodenbeck, M. Arain, D. Baldocchi, G. Bonan, A. Bondeau, A. Cescatti, G. Lasslop, A. Lindroth, M. Lomas, S. Luyssaert, H. Margolis, K. Oleson, O. Roupsard, E. Veenendaal, N. Viovy, C. Williams, F. Woodward, and D. Papale. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329: 834–838.CrossRefGoogle Scholar
  5. Bird, M.I., J. Lloyd, and G.D. Farquhar. 1996. Terrestrial carbon storage from the last glacial maximum to the present. Chemosphere 33: 1675–1685.CrossRefGoogle Scholar
  6. Bolin, B., E.T. Degens, S. Kempe, and P. Ketner. 1979. The global carbon cycle. Chichester: Wiley.Google Scholar
  7. Broecker, W.S., and T.-H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geol Observatory, Palisades: Eldigio Press.Google Scholar
  8. Canadell, J., C. Le Quere, M. Raupach, C. Field, E. Buitenhuis, P. Ciais, T. Conway, N. Gillett, R. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104: 18866–18870.CrossRefGoogle Scholar
  9. Ciais, P., A. Tagliabue, M. Cuntz, L. Bopp, M. Scholze, G. Hoffmann, A. Lourantou, S.P. Harrison, I.C. Prentice, D. Kelley, and C. Koven. 2012. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience 5(1): 74–79. doi: 10.1038/ngeo1324.CrossRefGoogle Scholar
  10. Ciais, P., T. Gasser, J.D. Paris, K. Caldeira, M.R. Raupach, J.G. Canadell, A. Patwardhan, P. Friedlingstein, S.L. Piao, and V. Gitz. 2013. Nature climatic change. Published online: 14 July 2013; doi: 10.1038/nclimate1942.
  11. Crutzen, P. 2002. Geology of mankind. Nature 415: 23.CrossRefGoogle Scholar
  12. Dahl-Jensen, D., M. Albert, A. Aldahan, N. Azuma, D. Balslev-Clausen, M. Baumgartner, A. Berggren, M. Bigler, T. Binder, T. Blunier, J. Bourgeois, E. Brook, S. Buchardt, C. Buizert, E. Capron, J. Chappellaz, J. Chung, H. Clausen, I. Cvijanovic, S. Davies, P. Ditlevsen, O. Eicher, H. Fischer, D. Fisher, L. Fleet, G. Gfeller, V. Gkinis, S. Gogineni, K. Goto-Azuma, A. Grinsted, H. Gudlaugsdottir, M. Guillevic, S. Hansen, M. Hansson, M. Hirabayashi, S. Hong, S. Hur, P. Huybrechts, C. Hvidberg, Y. Iizuka, T. Jenk, S. Johnsen, T. Jones, J. Jouzel, N. Karlsson, K. Kawamura, K. Keegan, E. Kettner, S. Kipfstuhl, H. Kjaer, M. Koutnik, T. Kuramoto, P. Kohler, T. Laepple, A. Landais, P. Langen, L. Larsen, D. Leuenberger, M. Leuenberger, C. Leuschen, J. Li, V. Lipenkov, P. Martinerie, O. Maselli, V. Masson-Delmotte, J. McConnell, H. Miller, O. Mini, A. Miyamoto, M. Montagnat-Rentier, R. Mulvaney, R. Muscheler, A. Orsi, J. Paden, C. Panton, F. Pattyn, J. Petit, K. Pol, T. Popp, G. Possnert, F. Prie, M. Prokopiou, A. Quiquet, S. Rasmussen, D. Raynaud, J. Ren, C. Reutenauer, C. Ritz, T. Rockmann, J. Rosen, M. Rubino, O. Rybak, D. Samyn, C. Sapart, A. Schilt, A. Schmidt, J. Schwander, S. Schupbach, I. Seierstad, J. Severinghaus, S. Sheldon, S. Simonsen, J. Sjolte, A. Solgaard, T. Sowers, P. Sperlich, H. Steen-Larsen, K. Steffen, J. Steffensen, D. Steinhage, T. Stocker, C. Stowasser, A. Sturevik, W. Sturges, A. Sveinbjornsdottir, A. Svensson, J. Tison, J. Uetake, P. Vallelonga, R. van de Wal, G. van der Wel, B. Vaughn, B. Vinther, E. Waddington, A. Wegner, I. Weikusat, J. White, F. Wilhelms, M. Winstrup, E. Witrant, E. Wolff, C. Xiao, J. Zheng, N. Community, and N. Community. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493: 489–494.CrossRefGoogle Scholar
  13. Damon, P., and R. Sternberg. 1989. Global production and decay of radiocarbon. Radiocarbon 31: 697–703.Google Scholar
  14. Davidson, E.A., and I.A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173.CrossRefGoogle Scholar
  15. Emerson, S., and J.I. Hedges. 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3.Google Scholar
  16. Field, C.B., and M.R. Raupach. 2004. The global carbon cycle: Integrating humans, climate, and the natural world. Washington D.C.:Island Press.Google Scholar
  17. Friedlingstein, P., M. Meinshausen, V. Arora, C. Jones, A. Anav, S. Liddicoat, and R. Knutti. 2014. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate 27: 511–526.CrossRefGoogle Scholar
  18. Gruber, N., P. Friedlingstein, C.B. Field, R. Valentini, M. Heimann, J.E. Richey, P. Romero-Lankao, D. Schulze, and C.-T.A. Chen. 2004. The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. In The global carbon cycle: Integrating humans, climate, and the natural world, ed. C.B. Field, and M.R. Raupach, 45–76. Washington, D.C: Island Press.Google Scholar
  19. Houghton, R.A., and J.L. Hackler. 2002. Carbon flux to the atmosphere from land-use changes. In Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.Google Scholar
  20. Hua, Q., M. Barbetti, and A. Rakowski. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55: 2059–2072.CrossRefGoogle Scholar
  21. Hugelius, G., J. Strauss, S. Zubrzycki, J.W. Harden, E.A.G. Schuur, C.L. Ping, L. Schirrmeister, G. Grosse, G.J. Michaelson, C. Koven, J. O´Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry. 2014. Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps. 11:4771–4822.Google Scholar
  22. IPCC. 2013. Climate change 2013: The physical science basis. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 1535 pp, doi: 10.1017/CBO9781107415324.
  23. Jobbágy, E.G., and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423–436.CrossRefGoogle Scholar
  24. Kaplan, J.O., I.C. Prentice, W. Knorr, and P.J. Valdes. 2002. Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Reseach Letters 29(22): 2074. doi: 10.1029/2002GL015230.Google Scholar
  25. Karlen, I., I.U. Olsson, P. Kllburg, and S. Kilici. 1968. Absolute determination of the activity of two 14C dating standards. Arkiv Geofysik 4: 465–471.Google Scholar
  26. Keeling, R.F., S.C. Piper, A.F. Bollenbacher, and S.J. Walker. 2014. Scripps CO 2 program. Scripps Institution of Oceanography, University of California, La Jolla, CA.Google Scholar
  27. Knorr, W. 2009. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophysical Research Letters 36.Google Scholar
  28. Laj, C., C. Kissel, A. Mazaud, E. Michel, R. Muscheler, and J. Beer. 2002. Geomagnetic field intensity, North Atlantic deep water circulation and atmospheric delta C-14 during the last 50 kyr. Earth and Planetary Science Letters 200: 177–190.CrossRefGoogle Scholar
  29. Lal, D., and H.E. Suess. 1968. The radioactivity of the atmosphere and hydrosphere. Annual Review of Nuclear Science 18.1: 407–434.Google Scholar
  30. Le Quere, C., C. Rodenbeck, E. Buitenhuis, T. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, and M. Heimann. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316: 1735–1738.CrossRefGoogle Scholar
  31. Le Quéré, C., G.P. Peters, R.J. Andres, R.M. Andrew, T.A. Boden, P. Ciais, P. Friedlingstein, R.A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D.C.E. Bakker, L. Bopp, J.G. Canadell, L.P. Chini, S.C. Doney, A. Harper, I. Harris, J.I. House, A.K. Jain, S.D. Jones, E. Kato, R.F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G. Park, B. Pfeil, B. Poulter, M.R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B.D. Stocker, T. Takahashi, B. Tilbrook, S. Van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle. 2014. Global carbon budget 2013. Earth System Science Data 6: 235–263.CrossRefGoogle Scholar
  32. Levin, I., and V. Hesshaimer. 1996. Refining of atmospheric transport model entries by the globally observed passive tracer distributions of (85)krypton and sulfur hexafluoride (SF6). Journal of Geophysical Research-Atmospheres 101: 16745–16755.CrossRefGoogle Scholar
  33. Levin, I., and V. Hesshaimer. 2000. Radiocarbon—A unique tracer of global carbon cycle dynamics. Radiocarbon 42: 69–80.Google Scholar
  34. Levin, I., and B. Kromer. 2004. The tropospheric (CO2)-C-14 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46: 1261–1272.Google Scholar
  35. Lewis, S., and M. Maslin. 2015. Defining the anthropocene. Nature 519: 171–180.CrossRefGoogle Scholar
  36. Libby, W.F. 1952. Radiocarbon dating, 2nd ed. The Chicago: University of Chicago Press.Google Scholar
  37. Manning, M., D. Lowe, W. Melhuish, R. Sparks, G. Wallace, C. Brenninkmeijer, and R. Mcgill. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32: 37–58.Google Scholar
  38. Marland, G., T.A. Boden, and R.J. Andres. 2006. Global, regional and national CO2 emissions. In: Trends: A compedium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.Google Scholar
  39. Petit, J., J. Jouzel, D. Raynaud, N. Barkov, J. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. Kotlyakov, M. Legrand, V. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.CrossRefGoogle Scholar
  40. Quéré, C.L. 2014. Global carbon budget 2014. Earth System Science Data.Google Scholar
  41. Raupach, M.R., M. Gloor, J.L. Sarmiento, J.G. Canadell, T.L. Frölicher, T. Gasser, R.A. Houghton, C. Le Quéré, and C.M. Trudinger. 2014. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11: 3453–3475. doi: 10.5194/bg-11-3453-2014.CrossRefGoogle Scholar
  42. Reimer, P., E. Bard, A. Bayliss, J. Beck, P. Blackwell, C. Ramsey, C. Buck, H. Cheng, R. Edwards, M. Friedrich, P. Grootes, T. Guilderson, H. Haflidason, I. Hajdas, C. Hatte, T. Heaton, D. Hoffmann, A. Hogg, K. Hughen, K. Kaiser, B. Kromer, S. Manning, M. Niu, R. Reimer, D. Richards, E. Scott, J. Southon, R. Staff, C. Turney, and J. van der Plicht. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal BP. Radiocarbon 55: 1869–1887.CrossRefGoogle Scholar
  43. Rothman, D. 2002. Atmospheric carbon dioxide levels for the last 500 million years. Proceedings of the National Academy of Sciences of the United States of America 99: 4167–4171.CrossRefGoogle Scholar
  44. Schlesinger, W. 1982. Carbon storage in the caliche of arid soils—A case-study from ARIZONA. Soil Science 133: 247–255.CrossRefGoogle Scholar
  45. Schuur, E.A.G., J. Bockheim, J.G. Canadell, E. Euskirchen, C.B. Field, S.V. Goryachkin, S. Hagemann, P. Kuhry, P.M. Lafleur, H. Lee, G. Mazhitova, F.E. Nelson, A. Rinke, V.E. Romanovsky, N. Shiklomanov, C. Tarnocai, S. Venevsky, J.G. Vogel, and S.A. Zimov. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58: 701–714.CrossRefGoogle Scholar
  46. Schuur E.A.G., A.D. McGuire, G. Grosse, J.W. Harden, D.J. Hayes, G. Hugelius, C.D, Koven, P. Kuhry, D.M. Lawrence, S.M. Natali, D. Olefeldt, V.E. Romanovsky, C. Schädel, K. Schaefer, M. Turetsky, C. Treat, and J.E. Vonk. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–179.Google Scholar
  47. Shakun, J., P. Clark, F. He, S. Marcott, A. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, and E. Bard. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484: 49–54.CrossRefGoogle Scholar
  48. Stuiver, M., and T. Braziunas. 1989. Atmospheric C-14 and century-scale solar oscillations. Nature 338: 405–408.CrossRefGoogle Scholar
  49. Stuiver, M., and P. Quay. 1980. Changes in atmospheric C-14 attributed to a variable sun. Science 207: 11–19.CrossRefGoogle Scholar
  50. Suess, H. 1955. Radiocarbon concentration in modern wood. Science 122: 415–417.CrossRefGoogle Scholar
  51. Suess, H. 1958. Radioactivity of the atmosphere and hydrosphere. Annual Review of Nuclear Science 8: 243–256.CrossRefGoogle Scholar
  52. Taylor, R.E. 2014. Radiocarbon dating, 2nd ed. Walnut Creek: Left Coast Press.Google Scholar
  53. World Meteorological Organization 1982. WMO Global Ozone Research and Monitoring Project, Rep. No. 14 of the Meeting of Experts on Potential Climatic Effects of Ozone and Other Minor Trace Gases. Geneva: World Meteorological Organization.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • E. A. G. Schuur
    • 1
    • 2
  • S. E. Trumbore
    • 3
    • 4
  • E. R. M. Druffel
    • 4
  • J. R. Southon
    • 4
  • A. Steinhof
    • 3
  • R. E. Taylor
    • 5
    • 6
  • J. C. Turnbull
    • 7
    • 8
  1. 1.Center for Ecosystem Science and Society, and Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of BiologyUniversity of FloridaGainesvilleUSA
  3. 3.Max Planck Institute for BiogeochemistryJenaGermany
  4. 4.Department of Earth System ScienceUniversity of California, IrvineIrvineUSA
  5. 5.Department of AnthropologyUniversity of California, RiversideRiversideUSA
  6. 6.Cotsen Institute of ArchaeologyUniversity of CaliforniaLos AngelesUSA
  7. 7.National Isotope CentreGNS ScienceLower HuttNew Zealand
  8. 8.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations