QueryVOWL: A Visual Query Notation for Linked Data

  • Florian Haag
  • Steffen Lohmann
  • Stephan Siek
  • Thomas Ertl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9341)

Abstract

In order to enable users without any knowledge of RDF and SPARQL to query Linked Data, visual approaches can be helpful by providing graphical support for query building. We present QueryVOWL, a visual query language that is based upon the ontology visualization VOWL and defines mappings to SPARQL. We aim for a language that is intuitive and easy to use, while remaining flexible and preserving most of the expressiveness of SPARQL. In contrast to related work, the queries can be created entirely with visual elements, taking into account RDFS and OWL concepts often used to structure Linked Data. This paper is a revised version of a workshop paper where we first introduced QueryVOWL. We present the query notation, some example queries, and two prototypical implementations of QueryVOWL. Also, we report on a qualitative user study that indicates lay users are able to construct and interpret QueryVOWL graphs.

Keywords

Visual querying VOWL QueryVOWL Visualization Linked Data SPARQL RDF OWL Semantic Web 

References

  1. 1.
    CIA world fact book in DAML. http://www.daml.org/2001/12/factbook/
  2. 2.
  3. 3.
    Faceted DBLP. http://dblp.l3s.de
  4. 4.
    Linked data. http://linkeddata.org
  5. 5.
  6. 6.
    SPARQL endpoints status. http://sparqles.okfn.org
  7. 7.
    Ambrus, O., Möller, K., Handschuh, S.: Konduit VQB: a visual query builder for SPARQL on the social semantic desktop. In: VISSW 2010, vol. 565. CEUR-WS (2010)Google Scholar
  8. 8.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Bārzdiņš, G., Rikačovs, S., Zviedris, M.: Graphical query language as SPARQL frontend. In: ABDIS 2009, Workshops and DC, pp. 93–107. Riga Technical University (2009)Google Scholar
  10. 10.
    Becker, C., Bizer, C.: Exploring the geospatial semantic web with DBpedia Mobile. Web Semant. 7(4), 278–286 (2009)CrossRefGoogle Scholar
  11. 11.
    Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the semantic web. In: SWUI 2006 (2006)Google Scholar
  12. 12.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  13. 13.
    Blau, H., Immerman, N., Jensen, D.: A visual query language for relational knowledge discovery. Computer Science Department Faculty Publication Series 105, University of Massachusetts-Amherst (2001)Google Scholar
  14. 14.
    Borsje, J., Embregts, H.: Graphical query composition and natural language processing in an RDF visualization interface. Bachelor’s thesis, Erasmus University Rotterdam (2006)Google Scholar
  15. 15.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Visual Comput. Graphics 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  16. 16.
    Bulter, G., Wang, G., Wang, Y., Zou, L.: A graph database with visual queries for genomics. In: Proceedings of the APBC 2005, pp. 31–40. Imperial College Press (2005)Google Scholar
  17. 17.
    Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011)Google Scholar
  18. 18.
    Groppe, J., Groppe, S., Schleifer, A.: Visual query system for analyzing social semantic web. In: WWW 2011, pp. 217–220. ACM (2011)Google Scholar
  19. 19.
    Haag, F., Lohmann, S., Ertl, T.: SparqlFilterFlow: SPARQL query composition for everyone. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 362–367. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: Visual composition of SPARQL queries. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC Satellite Events 2015. LNCS, vol. 9341, pp. 62–66. Springer (2015)Google Scholar
  21. 21.
    Haag, F., Lohmann, S., Siek, S., Ertl, T.: Visual querying of linked data with QueryVOWL. In: Joint Proceedings of SumPre 2015 and HSWI 2014–15. CEUR-WS (to appear)Google Scholar
  22. 22.
    Heggestøyl, S., Vega-Gorgojo, G., Giese, M.: Visual query formulation for linked open data: the norwegian entity registry case. In: 27th Norsk Informatikkonferanse (NIK 2014). Bibsys Open Journal Systems (2014)Google Scholar
  23. 23.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive relationship discovery via the semantic web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  24. 24.
    Heim, P., Ziegler, J., Lohmann, S.: gFacet: a browser for the web of data. In: IMC-SSW 2008, vol. 417, pp. 49–58. CEUR-WS (2008)Google Scholar
  25. 25.
    Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.: RDF-GL: a SPARQL-based graphical query language for RDF. In: Chbeir, R., Badr, Y., Abraham, A., Hassanien, A.-E. (eds.) Emergent Web Intelligence: Advanced Information Retrieval. Advanced Information and Knowledge Processing, pp. 87–116. Springer, London (2010) CrossRefGoogle Scholar
  26. 26.
    Lohmann, S., Díaz, P., Aedo, I.: MUTO: the modular unified tagging ontology. In: I-SEMANTICS 2011, pp. 95–104. ACM (2011)Google Scholar
  27. 27.
    Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visualization of ontologies. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti, V., Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKAW 2014 Satellite Events. LNCS, vol. 8982, pp. 154–158. Springer, Heidelberg (2015) Google Scholar
  28. 28.
    Lohmann, S., Negru, S., Haag, F., Ertl, T.: VOWL 2: user-oriented visualization of ontologies. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 266–281. Springer, Heidelberg (2014) Google Scholar
  29. 29.
    Negru, S., Haag, F., Lohmann, S.: Towards a unified visual notation for OWL ontologies: insights from a comparative user study. In: Proceedings of the 9th International Conference on Semantic Systems, I-SEMANTICS 2013, pp. 73–80. ACM (2013)Google Scholar
  30. 30.
    Negru, S., Lohmann, S., Haag, F.: VOWL: visual notation for OWL ontologies (2014). http://purl.org/vowl/
  31. 31.
    Russell, A., Smart, P., Braines, D., Shadbolt, N.: NITELIGHT: a graphical tool for semantic query construction. In: SWUI 2008, vol. 543. CEUR-WS (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Florian Haag
    • 1
  • Steffen Lohmann
    • 1
  • Stephan Siek
    • 1
  • Thomas Ertl
    • 1
  1. 1.Institute for Visualization and Interactive SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations