Advertisement

Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams

  • Lorenz Demey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9405)

Abstract

This paper studies the logical context-sensitivity of Aristotelian diagrams. I propose a new account of measuring this type of context-sensitivity, and illustrate it by means of a small-scale example. Next, I turn toward a more large-scale case study, based on Aristotelian diagrams for the categorical statements with subject negation. On the practical side, I describe an interactive application that can help to explain and illustrate the phenomenon of context-sensitivity in this particular case study. On the theoretical side, I show that applying the proposed measure of context-sensitivity leads to a number of precise yet highly intuitive results.

Keywords

Aristotelian diagram Context-sensitivity Background logic Syllogistics Information visualization 

References

  1. 1.
    van der Auwera, J.: Modality: the three-layered scalar square. J. Seman. 13, 181–195 (1996)CrossRefGoogle Scholar
  2. 2.
    Beller, S.: Deontic reasoning reviewed: psychological questions, empirical findings, and current theories. Cogn. Process. 11, 123–132 (2010)CrossRefGoogle Scholar
  3. 3.
    Béziau, J.Y., Payette, G.: Preface. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition: A General Framework for Cognition, pp. 9–22. Peter Lang, Bern (2012)CrossRefGoogle Scholar
  4. 4.
    Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Logic, Epistemology, and the Unity of Science, vol. 12. Springer, The Netherlands (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Chatti, S., Schang, F.: The cube, the square and the problem of existential import. Hist. Philos. Logic 32, 101–132 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clark, E.V.: On the pragmatics of contrast. J. Child Lang. 17, 417–431 (1990)CrossRefGoogle Scholar
  7. 7.
    De Morgan, A.: On the Syllogism, and Other Logical Writings. Routledge and Kegan Paul, London (1966)MATHGoogle Scholar
  8. 8.
    Dekker, P.: Not only Barbara. J. Logic Lang. Inf. 24, 95–129 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Demey, L.: Structures of oppositions for public announcement logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 313–339. Springer, Basel (2012)CrossRefGoogle Scholar
  10. 10.
    Demey, L., Smessaert, H.: The relationship between Aristotelian and Hasse diagrams. In: Delaney, A., Dwyer, T., Purchase, H. (eds.) Diagrams 2014. LNCS, vol. 8578, pp. 213–227. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments. Ms. (2015)Google Scholar
  12. 12.
    Demey, L., Smessaert, H.: Metalogical decorations of logical diagrams. Ms. (2015)Google Scholar
  13. 13.
    Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Univ. 6, 149–169 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Frijters, S., Demey, L.: The context-sensitivity of epistemic-logical diagrams (in Dutch), internal report, KU Leuven (2015)Google Scholar
  15. 15.
    Gottfried, B.: The diamond of contraries. J. Vis. Lang. Comput. 26, 29–41 (2015)CrossRefGoogle Scholar
  16. 16.
    Hacker, E.A.: The octagon of opposition. Notre Dame J. Formal Logic 16, 352–353 (1975)CrossRefMATHGoogle Scholar
  17. 17.
    Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago/London (1989)Google Scholar
  18. 18.
    Hurford, J.R.: Why synonymy is rare: fitness is in the speaker. In: Ziegler, J., Dittrich, P., Kim, J.T., Christaller, T., Banzhaf, W. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 442–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Jacquette, D.: Thinking outside the square of opposition box. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 73–92. Springer, Basel (2012)CrossRefGoogle Scholar
  20. 20.
    Joerden, J.C.: Logik im Recht. Springer-Lehrbuch. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Johnson, W.: Logic: Part I. Cambridge University Press, Cambridge (1921)Google Scholar
  22. 22.
    Keynes, J.N.: Studies and Exercises in Formal Logic. MacMillan, London (1884)Google Scholar
  23. 23.
    Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of opposition. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition: A General Framework for Cognition, pp. 43–60. Peter Lang, Bern (2012)Google Scholar
  24. 24.
    Lenzen, W.: How to square knowledge and belief. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 305–311. Springer, Basel (2012)CrossRefGoogle Scholar
  25. 25.
    Libert, T.: Hypercubes of duality. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 293–301. Springer, Basel (2012)CrossRefGoogle Scholar
  26. 26.
    Manin, D.Y.: Zipf’s law and avoidance of excessive synonymy. Cogn. Sci. 32, 1075–1098 (2008)CrossRefGoogle Scholar
  27. 27.
    Massin, O.: Pleasure and its contraries. Rev. Phil. Psych. 5, 15–40 (2014)CrossRefGoogle Scholar
  28. 28.
    McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. CSLI, Stanford (2010)Google Scholar
  29. 29.
    Mélès, B.: No group of opposition for constructive logic: the intuitionistic and linear cases. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 201–217. Springer, Basel (2012)CrossRefGoogle Scholar
  30. 30.
    Mikhail, J.: Universal moral grammar: theory, evidence and the future. Trends Cogn. Sci. 11, 143–152 (2007)CrossRefGoogle Scholar
  31. 31.
    O’Reilly, D.: Using the square of opposition to illustrate the deontic and alethic relations constituting rights. Univ. Toronto Law J. 45, 279–310 (1995)CrossRefGoogle Scholar
  32. 32.
    Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. CSLI, Stanford (2006)Google Scholar
  33. 33.
    Peckhaus, V.: Algebra of logic, quantification theory, and the square of opposition. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition: A General Framework for Cognition, pp. 25–41. Peter Lang, Bern (2012)Google Scholar
  34. 34.
    Porcaro, C., et al.: Contradictory reasoning network: an EEG and FMRI study. PLOS One 9(3), e92835 (2014)CrossRefGoogle Scholar
  35. 35.
    Pratt-Hartmann, I., Moss, L.S.: Logics for the relational syllogistic. Rev. Symbolic Logic 2, 647–683 (2009)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Read, S.: John Buridan’s theory of consequence and his octagons of opposition. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 93–110. Springer, Basel (2012)CrossRefGoogle Scholar
  37. 37.
    Reichenbach, H.: The syllogism revised. Philos. Sci. 19, 1–16 (1952)CrossRefGoogle Scholar
  38. 38.
    Rysiew, P.: Epistemic contextualism. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. CSLI, Stanford (2011)Google Scholar
  39. 39.
    Seuren, P.: The natural logic of language and cognition. Pragmatics 16, 103–138 (2006)CrossRefGoogle Scholar
  40. 40.
    Seuren, P.: The cognitive ontogenesis of predicate logic. Notre Dame J. Formal Logic 55, 499–532 (2014)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Seuren, P., Jaspers, D.: Logico-cognitive structure in the lexicon. Language 90, 607–643 (2014)CrossRefGoogle Scholar
  42. 42.
    Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. J. Logic Lang. Inf. 23, 527–565 (2014)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Smessaert, H., Demey, L.: Béziau’s contributions to the logical geometry of modalities and quantifiers. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic. Studies in Universal Logic, pp. 475–494. Springer, Switzerland (2015)Google Scholar
  44. 44.
    Sosa, E.: The analysis of ‘knowledge that P’. Analysis 25, 1–8 (1964)CrossRefGoogle Scholar
  45. 45.
    Vranes, E.: The definition of ‘norm conflict’ in international law and legal theory. Eur. J. Int. Law 17, 395–418 (2006)CrossRefGoogle Scholar
  46. 46.
    Wehmeier, K.: Wittgensteinian predicate logic. Notre Dame J. Formal Logic 45, 1–11 (2004)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Williamson, T.: Knowledge and its Limits. Oxford University Press, Oxford (2000)Google Scholar
  48. 48.
    Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge/Kegan Paul, London (1922)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Logic and Analytic PhilosophyKU LeuvenLeuvenBelgium

Personalised recommendations