Personalized Assistance for Dressing Users

  • Steven D. KleeEmail author
  • Beatriz Quintino Ferreira
  • Rui Silva
  • João Paulo Costeira
  • Francisco S. Melo
  • Manuela Veloso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9388)


In this paper, we present an approach for a robot to provide personalized assistance for dressing a user. In particular, given a dressing task, our approach finds a solution involving manipulator motions and also user repositioning requests. Specifically, the solution allows the robot and user to take turns moving in the same space and is cognizant of the user’s limitations. To accomplish this, a vision module monitors the human’s motion, determines if he is following the repositioning requests, and infers mobility limitations when he cannot. The learned constraints are used during future dressing episodes to personalize the repositioning requests. Our contributions include a turn-taking approach to human-robot coordination for the dressing problem and a vision module capable of learning user limitations. After presenting the technical details of our approach, we provide an evaluation with a Baxter manipulator.


Human-robot interaction Dressing Human tracking Learning and adaptive systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anjum, M.L., Ahmad, O., Rosa, S., Yin, J., Bona, B.: Skeleton tracking based complex human activity recognition using kinect camera. In: Beetz, M., Johnston, B., Williams, M.-A. (eds.) ICSR 2014. LNCS, vol. 8755, pp. 23–33. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Mathematics and Artificial Intelligence 22(1–2), 5–27 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, Y., Liu, C.K.: Coupling cloth and rigid bodies for dexterous manipulation. In: Motion in Games (2014)Google Scholar
  4. 4.
    Bruce, J., Veloso, M.M.: Real-time randomized path planning for robot navigation. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 288–295. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  5. 5.
    Colomé, A., Planells, A., Torras, C.: A friction-model-based framework for reinforcement learning of robotic tasks in non-rigid environments. In: ICRA (2015)Google Scholar
  6. 6.
    Fikes, R.E., Hart, P.E., Nilsson, N.J.: Learning and executing generalized robot plans. Artificial intelligence 3, 251–288 (1972)CrossRefGoogle Scholar
  7. 7.
    Kita, Y., Neo, E., Ueshiba, T., Kita, N.: Clothes handling using visual recognition in cooperation with actions. In: IROS (2010)Google Scholar
  8. 8.
    Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: ICRA (2000)Google Scholar
  9. 9.
    Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: ICRA (2010)Google Scholar
  10. 10.
    Matsubara, T., Shinohara, D., Kidode, M.: Reinforcement learning of a motor skill for wearing a t-shirt using topology coordinates. Advanced Robotics 27(7), 513–524 (2013)CrossRefGoogle Scholar
  11. 11.
    Melo, F.S., Veloso, M.: Decentralized mdps with sparse interactions. Artificial Intelligence 175(11), 1757–1789 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ferreira, B.Q., Gomes, J., Costeira, J.P.: A unified approach for hybrid source localization based on ranges and video. In: ICASSP (2015)Google Scholar
  13. 13.
    Tapus, A., Mataric, M., Scasselati, B.: Socially assistive robotics [grand challenges of robotics]. IEEE Robotics Automation Magazine 14(1), 35–42 (2007)CrossRefGoogle Scholar
  14. 14.
    Twardon, L., Ritter, H.J.: Interaction skills for a coat-check robot: Identifying and handling the boundary components of clothes. In: ICRA (2015)Google Scholar
  15. 15.
    Yamazaki, K., Oya, R., Nagahama, K., Okada, K., Inaba, M.: Bottom dressing by a life-sized humanoid robot provided failure detection and recovery functions. In: System Integration (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Steven D. Klee
    • 1
    Email author
  • Beatriz Quintino Ferreira
    • 2
  • Rui Silva
    • 3
  • João Paulo Costeira
    • 2
  • Francisco S. Melo
    • 3
  • Manuela Veloso
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.ISR,Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.INESC-ID and Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations