Asynchronous Traces and Open Petri Nets

  • Paolo Baldan
  • Filippo Bonchi
  • Fabio GadducciEmail author
  • Giacoma V. Monreale
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9465)


The relation between process calculi and Petri nets, two fundamental models of concurrency, has been widely investigated. Many proposals exist for encoding process calculi into Petri nets while preserving some behavioural features of interest. We recently introduced a framework where a net encoding can be defined uniformly for calculi with different communication patterns, including synchronous two-party, multi-party, and asynchronous communication. The encoding preserves and reflects several behavioural semantics, notably bisimulation equivalence. The situation is less immediate for asynchronous calculi and trace semantics: considering traces that arise when viewing asynchronous calculi as a fragment of the synchronous ones, trace equivalence is not reflected by the encoding. Focusing on CCS, we argue that this phenomenon is related to the imperfect match between trace inclusion and may testing preorder. We consider an alternative labelled transition systems where the latter issue is solved, and we show that, indeed, the corresponding trace semantics is preserved and reflected by the net encoding.


Asynchronous CCS (Open) Petri nets Modular encoding May testing Trace semantics 



We are indebted in many ways to Pierpaolo Degano. Indeed, the earliest exposure of the third author to Petri nets was in a remote cycle of seminars, whose initial lesson was introduced by the quotation in the first page. A scary moment, if there ever was one. Along the years, we all –either as Ph.D. students or later on as co-authors/colleagues/partners in projects– benefited from the insights and availability of Pierpaolo. More technically, we already mentioned his early contributions on net encoding for calculi. In general terms, the insistence on the proof structure of a computation in order to distill a suitable (concurrent) semantics for a calculus, which is typical of the work of Pierpaolo since the early Eighties, has been a fixed star: the modularity of our net encoding spills out of this “commandment”.

We are most grateful to the anonymous reviewers whose suggestions and remarks helped us to improve the paper.


  1. 1.
    Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous \(\pi \)-calculus. Theoret. Comput. Sci. 195(2), 291–324 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.: Modular encoding of synchronous and asynchronous interactions using open Petri nets. Sci. Comput. Program. 109, 96–124 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.V.: Encoding synchronous interactions using labelled Petri nets. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 1–16. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets based on deterministic processes. Math. Struct. Comput. Sci. 15(1), 1–35 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.V.: Concurrency cannot be observed, asynchronously. Math. Struct. Comput. Sci. 25(4), 978–1004 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonchi, F., Gadducci, F., Monreale, G.V.: A general theory of barbs, contexts, and labels. ACM Trans. Comput. Logic 15(4), 35:1–35:27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boreale, M., De Nicola, R., Pugliese, R.: Trace and testing equivalence on asynchronous processes. Inf. Comput. 172(2), 139–164 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for C/E and P/T nets’ interactions. Log. Methods Comput. Sci. 9(3), 1–65 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Busi, N., Gorrieri, R., Zavattaro, G.: Comparing three semantics for Linda-like languages. Theoret. Comput. Sci. 240(1), 49–90 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Busi, N., Gorrieri, R.: Distributed semantics for the \(\pi \)-calculus based on Petri nets with inhibitor arcs. Logic Algebraic Program. 78(3), 138–162 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Castellani, I., Hennessy, M.: Testing theories for asynchronous languages. In: Sarukkai, S., Arvind, V. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 90–102. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  12. 12.
    Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E system. In: Zilli, M.V. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol. 280, pp. 144–165. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  13. 13.
    Degano, P., De Nicola, R., Montanari, U.: A distributed operational semantics for CCS based on condition/event systems. Acta Informatica 26(1/2), 59–91 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Degano, P., Gorrieri, R., Marchetti, S.: An exercise in concurrency: a CSP process as a condition/event system. In: Rozenberg, G. (ed.) APN 1998. LNCS, vol. 340, pp. 85–105. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  15. 15.
    Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of general \(\pi \)-calculus terms. Formal Aspects Comput. 20(4–5), 429–450 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Goltz, U.: CCS and Petri nets. In: Guessarian, I. (ed.) Semantics of Systems of Concurrent Processes. LNCS, vol. 469, pp. 334–357. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  17. 17.
    Gorrieri, G., Montanari, U.: SCONE: A simple calculus of nets. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 2–31. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  18. 18.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle River (1985)zbMATHGoogle Scholar
  19. 19.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: Tokoro, M., Nierstrasz, O., Wegner, P. (eds.) ECOOP 1991. LNCS, vol. 612, pp. 21–51. Springer, Heidelberg (1991)Google Scholar
  20. 20.
    Jenner, L., Vogler, W.: Fast asynchronous systems in dense time. Theoret. Comput. Sci. 254(1–2), 379–422 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 243. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  22. 22.
    Milner, R.: Bigraphs for Petri nets. In: Reisig, W., Desel, J., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  23. 23.
    Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Mens, T., Schürr, A., Taentzer, G. (eds.) PNGT 2004. ENTCS, vol. 127, pp. 107–120. Elsevier (2005)Google Scholar
  25. 25.
    Selinger, P.: Categorical structure of asynchrony. In: Brookes, S., Jung, A., Mislove, M., Scedrov, A. (eds.) MFPS 1999. ENTCS, vol. 20. Elsevier (1999)Google Scholar
  26. 26.
    Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M., Mehlhorn, K. (eds.) STACS 1984. LNCS, vol. 166, pp. 140–150. Springer, Heidelberg (1984) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Filippo Bonchi
    • 2
  • Fabio Gadducci
    • 3
    Email author
  • Giacoma V. Monreale
    • 3
  1. 1.Dipartimento di MatematicaUniversità di PadovaPadovaItaly
  2. 2.ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)LyonFrance
  3. 3.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations