Advertisement

Causal Trees, Finally

  • Roberto BruniEmail author
  • Ugo Montanari
  • Matteo Sammartino
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9465)

Abstract

Causal trees are one of the earliest pioneering contributions of Pierpaolo Degano, in joint work with Philippe Darondeau. The idea is to record causality dependencies in processes and in their actions. As such, causal trees sit between interleaving models and truly concurrent ones and they originate an abstract, event-based bisimulation semantics for causal processes, where, intuitively, minimal causal trees represent the semantic domain. In the paper we substantiate this feeling, by first defining a nominal, compositional operational semantics based on History-Dependent automata and then we apply categorical techniques, based on named-sets, showing that causal trees form the final coalgebra semantics of a suitable coalgebraic representation of causal behaviour.

References

  1. 1.
    Basagni, S.: A note on causal trees and their applications to CCS. Int. J. Comput. Math. 71(2), 137–159 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodei, C.: Some concurrency models in a categorical framework. In: ICTCS (1998)Google Scholar
  3. 3.
    Bruni, R., Montanari, U., Sammartino, M.: A coalgebraic semantics for causality in Petri nets. J. Logic Algebr. Meth. Progr. (2015, in press). http://cs.ru.nl/M.Sammartino/publications/JLAMP15.pdf
  4. 4.
    Bruni, R., Montanari, U., Sammartino, M.: Revisiting causality, coalgebraically. Acta Inf. 52(1), 5–33 (2015). http://www.cs.ru.nl/M.Sammartino/publications/ACTA2014.pdf MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding. Electr. Notes Theor. Comput. Sci. 264(2), 63–81 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation of names. Inf. Comput. 208(12), 1349–1367 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Darondeau, P., Degano, P.: Causal trees. In: Dezani-Ciancaglini, M., Ronchi Della Rocca, S., Ausiello, G. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–248. Springer, Heidelberg (1989) CrossRefGoogle Scholar
  8. 8.
    Darondeau, P., Degano, P.: Causal trees interleaving + causality. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 239–255. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  9. 9.
    Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS, pp. 93–104 (2001)Google Scholar
  10. 10.
    Fröschle, S.B., Hildebrandt, T.T.: On plain and hereditary history-preserving bisimulation. In: Kutyłowski, M., Wierzbicki, T.M., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 354–365. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  11. 11.
    Fröschle, S.B., Lasota, S.: Causality versus true-concurrency. Theor. Comput. Sci. 386(3), 169–187 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. Higher-Order Symbolic Comput. 19(2–3), 283–304 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Montanari, U., Pistore, M.: Minimal transition systems for history-preserving bisimulation. In: Morvan, M., Reischuk, R. (eds.) STACS 1997. LNCS, vol. 1200, pp. 413–425. Springer, Heidelberg (1997) Google Scholar
  14. 14.
    Montanari, U., Pistore, M., Yankelevich, D.: Efficient minimization up to location equivalence. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 265–279. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  15. 15.
    Pistore, M.: History dependent automata. Ph.D. thesis, University of Pisa (1999)Google Scholar
  16. 16.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roberto Bruni
    • 1
    Email author
  • Ugo Montanari
    • 1
  • Matteo Sammartino
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.ICISRadboud UniversityNijmegenThe Netherlands

Personalised recommendations