Causal Trees, Finally
- 804 Downloads
Abstract
Causal trees are one of the earliest pioneering contributions of Pierpaolo Degano, in joint work with Philippe Darondeau. The idea is to record causality dependencies in processes and in their actions. As such, causal trees sit between interleaving models and truly concurrent ones and they originate an abstract, event-based bisimulation semantics for causal processes, where, intuitively, minimal causal trees represent the semantic domain. In the paper we substantiate this feeling, by first defining a nominal, compositional operational semantics based on History-Dependent automata and then we apply categorical techniques, based on named-sets, showing that causal trees form the final coalgebra semantics of a suitable coalgebraic representation of causal behaviour.
Keywords
Treatable Cause Philippe Darondeau final Coalgebra Semantics Pierpaolo Degano Causal ProcessesReferences
- 1.Basagni, S.: A note on causal trees and their applications to CCS. Int. J. Comput. Math. 71(2), 137–159 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bodei, C.: Some concurrency models in a categorical framework. In: ICTCS (1998)Google Scholar
- 3.Bruni, R., Montanari, U., Sammartino, M.: A coalgebraic semantics for causality in Petri nets. J. Logic Algebr. Meth. Progr. (2015, in press). http://cs.ru.nl/M.Sammartino/publications/JLAMP15.pdf
- 4.Bruni, R., Montanari, U., Sammartino, M.: Revisiting causality, coalgebraically. Acta Inf. 52(1), 5–33 (2015). http://www.cs.ru.nl/M.Sammartino/publications/ACTA2014.pdf MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding. Electr. Notes Theor. Comput. Sci. 264(2), 63–81 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation of names. Inf. Comput. 208(12), 1349–1367 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Darondeau, P., Degano, P.: Causal trees. In: Dezani-Ciancaglini, M., Ronchi Della Rocca, S., Ausiello, G. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–248. Springer, Heidelberg (1989) CrossRefGoogle Scholar
- 8.Darondeau, P., Degano, P.: Causal trees interleaving + causality. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 239–255. Springer, Heidelberg (1990) CrossRefGoogle Scholar
- 9.Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS, pp. 93–104 (2001)Google Scholar
- 10.Fröschle, S.B., Hildebrandt, T.T.: On plain and hereditary history-preserving bisimulation. In: Kutyłowski, M., Wierzbicki, T.M., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 354–365. Springer, Heidelberg (1999) CrossRefGoogle Scholar
- 11.Fröschle, S.B., Lasota, S.: Causality versus true-concurrency. Theor. Comput. Sci. 386(3), 169–187 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. Higher-Order Symbolic Comput. 19(2–3), 283–304 (2006)CrossRefzbMATHGoogle Scholar
- 13.Montanari, U., Pistore, M.: Minimal transition systems for history-preserving bisimulation. In: Morvan, M., Reischuk, R. (eds.) STACS 1997. LNCS, vol. 1200, pp. 413–425. Springer, Heidelberg (1997) Google Scholar
- 14.Montanari, U., Pistore, M., Yankelevich, D.: Efficient minimization up to location equivalence. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 265–279. Springer, Heidelberg (1996) CrossRefGoogle Scholar
- 15.Pistore, M.: History dependent automata. Ph.D. thesis, University of Pisa (1999)Google Scholar
- 16.Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar