Advertisement

Games with Communication: From Belief to Preference Change

  • Guillaume AucherEmail author
  • Bastien MaubertEmail author
  • Sophie PinchinatEmail author
  • François SchwarzentruberEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9387)

Abstract

In this work we consider simple extensive-form games with two players, Player A and Player B, where Player B can make announcements about his strategy. Player A has then to revise her preferences about her strategies, so as to better respond to the strategy she believes Player B will play. We propose a generic framework that combines methods and techniques from belief revision theory and social choice theory to address this problem. Additionally, we design a logic that Player A can use to reason and decide how to play in such games.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arrow, K.J., Sen, A.K.: Handbook of social choice and welfare, vol. 19. North Holland (2002)Google Scholar
  3. 3.
    Brams, S.J., Fishburn, P.C.: Voting procedures. Handbook of social choice and welfare 1, 173–236 (2002)CrossRefGoogle Scholar
  4. 4.
    Crawford, V.P., Sobel, J.: Strategic information transmission. Econometrica: Journal of the Econometric Society, pp. 1431–1451 (1982)Google Scholar
  5. 5.
    Farrell, J., Rabin, M.: Cheap talk. The Journal of Economic Perspectives, 103–118 (1996)Google Scholar
  6. 6.
    Gärdenfors, P.: Knowledge in Flux (Modeling the Dynamics of Epistemic States). Bradford/MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  7. 7.
    Gärdenfors, P., Rott, H.: Belief revision. Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 4, pp. 35–132 (1995)Google Scholar
  8. 8.
    Nayak, A.C.: Iterated belief change based on epistemic entrenchment. Erkenntnis 41(3), 353–390 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rott, H.: Shifting priorities: simple representations for twenty-seven iterated theory change operators. Towards mathematical philosophy, pp. 269–296 (2009)Google Scholar
  11. 11.
    van Benthem, J.: Logical dynamics of information and interaction. Cambridge University Press (2011)Google Scholar
  12. 12.
    Vasiljev, S.: Cardinal voting: the way to escape the social choice impossibility. Available at SSRN 1116545 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IRISA - INRIA / Université de Rennes 1RennesFrance
  2. 2.LORIA - CNRS / Université de LorraineNancyFrance
  3. 3.IRISA / Université de Rennes 1RennesFrance
  4. 4.IRISA - ENS RennesRennesFrance

Personalised recommendations