Module Checking for Uncertain Agents

  • Wojciech Jamroga
  • Aniello Murano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9387)


Module checking is a decision problem proposed in late 1990s to formalize verification of open systems, i.e., systems that must adapt their behavior to the input they receive from the environment. It was recently shown that module checking offers a distinctly different perspective from the better-known problem of model checking. Module checking has been studied in several variants. Syntactically, specifications in temporal logic CTL and strategic logic ATL have been used. Semantically, the environment was assumed to have either perfect or imperfect information about the global state of the interaction. In this work, we rectify our approach to imperfect information module checking from the previous paper. Moreover, we study the variant of module checking where also the system acts under uncertainty. More precisely, we assume that the system consists of one or more agents whose decision making is constrained by their observational capabilities. We propose an automata-based verification procedure for the new problem, and establish its computational complexity.


Module checking Strategic logic Imperfect information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågotnes, T. , Goranko, V., Jamroga, W.: Alternating-time temporal logics with irrevocable strategies. In: Proceedings of TARK XI, pp. 15–24 (2007)Google Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time Temporal Logic. J. ACM 49, 672–713 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module checking with imperfect information. Inf. Comput. 223(1), 1–17 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aminof, B., Murano, A., Vardi, M.Y.: Pushdown module checking with imperfect information. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 460–475. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Basu, S., Roop, P.S., Sinha, R.: Local module checking for CTL specifications. Electronic Notes in Theoretical Computer Science 176(2), 125–141 (2007)CrossRefGoogle Scholar
  6. 6.
    Bozzelli, L.: New results on pushdown module checking with imperfect information. In: Proceedings of GandALF, EPTCS, vol. 54, pp. 162–177 (2011)Google Scholar
  7. 7.
    Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. Formal Methods in System Design 36(1), 65–95 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Bulling, N., Jamroga, W.: Comparing variants of strategic ability: How uncertainty and memory influence general properties of games. Journal of Autonomous Agents and Multi-Agent Systems 28(3), 474–518 (2014)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  10. 10.
    de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: uncertainty, but with precision. In: Proceedings of LICS, pp. 170–179. IEEE Computer Society (2004)Google Scholar
  11. 11.
    Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers (1990)Google Scholar
  12. 12.
    Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pp. 368–377. IEEE (1991)Google Scholar
  13. 13.
    Ferrante, A., Murano, A., Parente, M.: Enriched \(\mu \)-calculi module checking. Logical Methods in Computer Science 4(3–1), 1–21 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Gesell, M., Schneider, K.: Modular verification of synchronous programs. In: Proceedings of ACSD, pp. 70–79. IEEE (2013)Google Scholar
  15. 15.
    Godefroid, P.: Reasoning about abstract open systems with generalized module checking. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 223–240. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  16. 16.
    Godefroid, P., Huth, M.: Model checking vs. generalized model checking: semantic minimizations for temporal logics. In: Proceedings of LICS, pp. 158–167. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Jamroga, W., Murano, A.: On module checking and strategies. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems AAMAS 2014, pp. 701–708 (2014)Google Scholar
  18. 18.
    Jamroga, W., Murano, A.: Module checking of strategic ability. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems AAMAS 2015, pp. 227–235 (2015)Google Scholar
  19. 19.
    Kupferman, O.: Augmenting branching temporal logics with existential quantification over atomic propositions. Journal of Logic and Computation 9(2), 135–147 (1999)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.: Module checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996) Google Scholar
  21. 21.
    Kupferman, O., Vardi, M.: Module checking revisited. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 36–47. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  22. 22.
    Kupferman, O., Vardi, M., Wolper, P.: Module checking. Inf. Comput. 164(2), 322–344 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Da Costa, A., Laroussinie, F., Markey, N.: Quantified CTL: expressiveness and model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 177–192. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  24. 24.
    Martinelli, F.: Module checking through partial model checking. Technical report, CNR Roma - TR-06 (2002)Google Scholar
  25. 25.
    Martinelli, F., Matteucci, I.: An approach for the specification, verification and synthesis of secure systems. Electronic Notes in Theoretical Computer Science 168, 29–43 (2007)CrossRefGoogle Scholar
  26. 26.
    Murano, A., Napoli, M., Parente, M.: Program complexity in hierarchical module checking. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 318–332. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science 85(2), 82–93 (2004)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Thomas, W.: Automata on infinite objects. Handbook of Theoretical Computer Science 2 (1990)Google Scholar
  29. 29.
    Wang, Y., Dechesne, F.: On expressive power and class invariance. CoRR, abs/0905.4332 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  2. 2.Dipartimento di Ingegneria Elettrica e Tecnologie dell’InformazioneUniversità degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations