Advertisement

Multi-agent Path Planning in Known Dynamic Environments

  • Aniello Murano
  • Giuseppe Perelli
  • Sasha Rubin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9387)

Abstract

We consider the problem of planning paths of multiple agents in a dynamic but predictable environment. Typical scenarios are evacuation, reconfiguration, and containment. We present a novel representation of abstract path-planning problems in which the stationary environment is explicitly coded as a graph (called the arena) while the dynamic environment is treated as just another agent. The complexity of planning using this representation is pspace-complete. The arena complexity (i.e., the complexity of the planning problem in which the graph is the only input, in particular, the number of agents is fixed) is np-hard. Thus, we provide structural restrictions that put the arena complexity of the planning problem into ptime(for any fixed number of agents). The importance of our work is that these structural conditions (and hence the complexity results) do not depend on graph-theoretic properties of the arena (such as clique- or tree-width), but rather on the abilities of the agents.

Keywords

Model Check Planning Problem Path Planning Dynamic Environment Mobile Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled multi-agent systems. In: Rintanen, J., Nebel, B., Beck, J.C., Hansen, E.A., (eds. ) ICAPS, pp. 28–35. AAAI (2008)Google Scholar
  2. 2.
    Bylander, T.: The computational complexity of propositional strips planning. Artificial Intelligence 69(1), 165–204 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen, H., Giménez, O.: Causal graphs and structurally restricted planning. J. Comput. Syst. Sci. 76(7), 579–592 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cooper, M.C., Maris, F., Régnier, P.: Monotone temporal planning: Tractability, extensions and applications. J. Artif. Intell. Res. (JAIR) 50, 447–485 (2014)MathSciNetMATHGoogle Scholar
  5. 5.
    De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for temporally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  6. 6.
    Dean, T.L., Givan, R., Kim, K.: Solving stochastic planning problems with large state and action spaces. In: Simmons, R.G., Veloso, M.M., Smith, S.F., (eds.) AIPS, pp. 102–110. AAAI (1998)Google Scholar
  7. 7.
    Enderton, H.: A mathematical introduction to logic. Academic Press (1972)Google Scholar
  8. 8.
    Flake, G.W., Baum, E.B.: Rush hour is pspace-complete, or “why you should generously tip parking lot attendants”. Theoretical Computer Science 270(1–2), 895–911 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool (2013)Google Scholar
  10. 10.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice. Elsevier (2004)Google Scholar
  11. 11.
    Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem. Technical report, Courant Institute of Mathematical Sciences, New York (1984)Google Scholar
  13. 13.
    Jamroga, W.: Strategic planning through model checking of ATL formulae. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 879–884. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  14. 14.
    Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial intelligence 101(1), 99–134 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: FOCS, pp. 241–250. IEEE (1984)Google Scholar
  16. 16.
    Krontiris, A., Sajid, Q., Bekris, K.: Towards using discrete multiagent pathfinding to address continuous problems. In: Proc, AAAI Workshop on Multiagent Pathfinding (2012)Google Scholar
  17. 17.
    Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating room planning with elective and emergency demand for surgery. European Journal of Operational Research 185(3), 1026–1037 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    J.-C. Latombe. Robot motion planning, volume 124 of International Series in Engineering and Computer Science. Springer, 2012Google Scholar
  19. 19.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)Google Scholar
  20. 20.
    Lumelsky, V.J., Stepanov, A., et al.: Dynamic path planning for a mobile automaton with limited information on the environment. Automatic Control, IEEE Transactions on 31(11), 1058–1063 (1986)CrossRefMATHGoogle Scholar
  21. 21.
    Mogavero, F., Murano, A., Vardi, M.Y.: Relentful strategic reasoning in alternating-time temporal logic. Journal of Logic and Computation (2014) (to appear)Google Scholar
  22. 22.
    Murano, A., Sorrentino, L.: A game-based model for human-robots interaction. In: Workshop “From Objects to Agents” (WOA) CEUR Workshop Proceedings, vol. 1382, pp. 146–150. CEUR-WS.org (2015)Google Scholar
  23. 23.
    Papadimitriou, C.H., Raghavan, P., Sudan, M., Tamaki, H.: Motion planning on a graph (extended abstract). In: FOCS, pp. 511–520. IEEE (1994)Google Scholar
  24. 24.
    Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-deterministic domains. In: Walsh, T., (ed.) IJCAI, pp. 479–486. IJCAI/AAAI (2001)Google Scholar
  25. 25.
    Pistore, M., Vardi, M.Y.: The planning spectrum - one, two, three, infinity. J. Artif. Intell. Res. (JAIR) 30, 101–132 (2007)MathSciNetMATHGoogle Scholar
  26. 26.
    Röger, G., Helmert, M.: Non-optimal multi-agent pathfinding is solved (since 1984). In: Borrajo, D., Felner, A., Korf, R.E., Likhachev, M., López, C.L., Ruml, W., Sturtevant, N.R., (eds.) SOCS. AAAI (2012)Google Scholar
  27. 27.
    Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., Feyzeau, P.: Path planning: a 2013 survey. In: Industrial Engineering and Systems Management (IESM), pp. 1–8, October 2013Google Scholar
  28. 28.
    Surynek, P.: An application of pebble motion on graphs to abstract multi-robot path planning. In: ICTAI, pp. 151–158. IEEE (2009)Google Scholar
  29. 29.
    Tromp, J., Cilibrasi, R.: Limits of Rush Hour Logic Complexity. In: CoRR, abs/cs/0502068 (2005)Google Scholar
  30. 30.
    van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: Robotics Science and Systems V (2009)Google Scholar
  31. 31.
    van der Hoek, W., Wooldridge, M.:Tractable multiagent planning for epistemic goals. In: AAMAS, pp. 1167–1174. ACM (2002)Google Scholar
  32. 32.
    Wilfong, G.T.: Motion planning in the presence of movable obstacles. Ann. Math. Artif. Intell. 3(1), 131–150 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Università di Napoli “Federico II”NaplesItaly
  2. 2.University of OxfordOxfordEngland

Personalised recommendations