International Conference on Principles and Practice of Multi-Agent Systems

PRIMA 2015: PRIMA 2015: Principles and Practice of Multi-Agent Systems pp 185-200 | Cite as

Verification of Asynchronous Mobile-Robots in Partially-Known Environments

  • Benjamin Aminof
  • Aniello Murano
  • Sasha Rubin
  • Florian Zuleger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9387)

Abstract

This paper establishes a framework based on logic and automata theory in which to model and automatically verify that multiple mobile robots, with sensing abilities, moving asynchronously, correctly perform their tasks. The motivation is from practical scenarios in which the environment is not completely know to the robots, e.g., physical robots exploring a maze, or software agents exploring a hostile network. The framework shows how to express tasks in a logical language, and exhibits an algorithm solving the parameterised verification problem, where the graphs are treated as the parameter. The main assumption that yields decidability is that the robots take a bounded number of turns. We prove that dropping this assumption results in undecidability, even for robots with very limited (“local”) sensing abilities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  4. 4.
    Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn unlabeled directed graphs. Technical report, MIT (1995)Google Scholar
  6. 6.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS), pp. 155–160 (1967)Google Scholar
  7. 7.
    Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. T. Algorithms (TALG) 4(4), 42 (2008)MathSciNetMATHGoogle Scholar
  9. 9.
    Courcelle, B., Engelfriet, J.: Book: Graph structure and monadic second-order logic. a language-theoretic approach. Bull. EATCS 108, 179 (2012)MATHGoogle Scholar
  10. 10.
    Das, S.: Mobile agents in distributed computing: Network exploration. Bull. EATCS 109, 54–69 (2013)Google Scholar
  11. 11.
    De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for generalized planning and agent composition. In: Fox, M., Poole, D., (eds.) AAAI, pp. 297–302 (2010)Google Scholar
  12. 12.
    Delzanno, G.: Parameterized verification and model checking for distributed broadcast protocols. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 1–16. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51(1), 38–63 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N.: Computing by mobile robotic sensors. In: Nikoletseas, S., Rolim, J.D., (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks, EATCS, pp. 655–693. Springer (2011)Google Scholar
  15. 15.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2012)Google Scholar
  16. 16.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, p. 93. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  17. 17.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science 345, 331–344 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gasieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Hu, Y., De Giacomo, G.: Generalized planning: synthesizing plans that work for multiple environments. In: Walsh, T., (ed.) IJCAI, pp. 918–923. AAAI (2011)Google Scholar
  20. 20.
    Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 108–127. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Kouvaros, P., Lomuscio, A.: Automatic verification of parameterised multi-agent systems. In: Gini, M.L., Shehory, O., Ito, T., Jonker, C.M., (eds.) AAMAS, pp. 861–868 (2013)Google Scholar
  23. 23.
    Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of robot swarms. In: Bonet, B., Koenig, S., (eds.) AAAI, pp. 2081–2088 (2015)Google Scholar
  24. 24.
    An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gkasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  25. 25.
    Kranakis, E., Krizanc, D., Rajsbaum, S.: Computing with mobile agents in distributed networks. In: Rajasekaran, S., Reif, J., (eds.) Handbook of Parallel Computing: Models, Algorithms, and Applications, CRC Computer and Information Science Series, pp. 8–1 – 8–20. Chapman Hall (2007)Google Scholar
  26. 26.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)Google Scholar
  27. 27.
    Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014) Google Scholar
  28. 28.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Inc (1967)Google Scholar
  29. 29.
    Murano, A., Sorrentino, L.: A game-based model for human-robots interaction. In: Workshop “From Objects to Agents” (WOA), CEUR Workshop Proceedings, vol. 1382, pp. 146–150. CEUR-WS.org (2015)Google Scholar
  30. 30.
    Rubin, S.: Parameterised verification of autonomous mobile-agents in static but unknown environments. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E., (eds.) AAMAS, pp. 199–208 (2015)Google Scholar
  31. 31.
    Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Benjamin Aminof
    • 1
  • Aniello Murano
    • 2
  • Sasha Rubin
    • 2
  • Florian Zuleger
    • 1
  1. 1.Technische Universität WienViennaAustria
  2. 2.Università Degli Studi di Napoli “Federico II”NaplesItaly

Personalised recommendations