Applying Automata Learning to Embedded Control Software

  • Wouter Smeenk
  • Joshua Moerman
  • Frits Vaandrager
  • David N. Jansen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9407)


Using an adaptation of state-of-the-art algorithms for black-box automata learning, as implemented in the LearnLib tool, we succeeded to learn a model of the Engine Status Manager (ESM), a software component that is used in printers and copiers of Océ. The main challenge that we encountered was that LearnLib, although effective in constructing hypothesis models, was unable to find counterexamples for some hypotheses. In fact, none of the existing FSM-based conformance testing methods that we tried worked for this case study. We therefore implemented an extension of the algorithm of Lee and Yannakakis for computing an adaptive distinguishing sequence. Even when an adaptive distinguishing sequence does not exist, Lee and Yannakakis’ algorithm produces an adaptive sequence that ‘almost’ identifies states. In combination with a standard algorithm for computing separating sequences for pairs of states, we managed to verify states with on average 3 test queries. Altogether, we needed around 60 million queries to learn a model of the ESM with 77 inputs and 3.410 states. We also constructed a model directly from the ESM software and established equivalence with the learned model. To the best of our knowledge, this is the first paper in which active automata learning has been applied to industrial control software.


Test Suite Label Transition System Composite State System Under Test Input Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Lou Somers for suggesting the ESM case study and for his support of our research. Fides Aarts and Harco Kuppens helped us with the use of LearnLib and CADP, and Jan Tretmans gave useful feedback.


  1. 1.
    Aarts, F.: Tomte: bridging the gap between active learning and real-world systems. Ph.D. thesis, Radboud University Nijmegen, October 2014Google Scholar
  2. 2.
    Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state communication protocols using regular inference with abstraction. Formal Methods Syst. Des. 46(1), 1–41 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aarts, F., Kuppens, H., Tretmans, G., Vaandrager, F., Verwer, S.: Improving active mealy machine learning for protocol conformance testing. Mach. Learn. 96(1–2), 189–224 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks. In: ICWSM. The AAAI Press (2009)Google Scholar
  6. 6.
    Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  8. 8.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. J. Log. Algebr. Meth. Program. 84(1), 54–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: ACM Conference on Computer and Communications Security, pp. 426–439. ACM (2010)Google Scholar
  10. 10.
    Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)CrossRefzbMATHGoogle Scholar
  11. 11.
    David, A., Oliver Möller, M., Yi, W.: Formal verification of UML statecharts with real-time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 218–232. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  12. 12.
    Eshuis, R., Jansen, D.N., Wieringa, R.: Requirements-level semantics and model checking of object-oriented statecharts. Requir. Eng. 7(4), 243–263 (2002)CrossRefGoogle Scholar
  13. 13.
    Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Fujiwara, S., Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)CrossRefGoogle Scholar
  15. 15.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Graaf, B., van Deursen, A.: Model-driven consistency checking of behavioural specifications. In: MOMPES, pp. 115–126. IEEE Computer Society (2007)Google Scholar
  17. 17.
    Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by inference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos, O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge, UK (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  22. 22.
    Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  23. 23.
    Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition systems for test-case generation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 186–207. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  24. 24.
    Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset for MDA. In: Model-Driven Architecture, p. 1 (2009)Google Scholar
  25. 25.
    Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Trans. Comput. 43(3), 306–320 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Leucker, M.: Learning meets verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  27. 27.
    Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based on learning parameterized I/O models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  28. 28.
    Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating learning of register automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 466–471. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  29. 29.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  30. 30.
    Object Management Group (OMG). Unified modeling language specification: Version 2, revised final adopted specification (2004).
  31. 31.
    Ploeger, B.: Analysis of concurrent state machines in embedded copier software. Master’s thesis, Eindhoven University of Technology, August 2005Google Scholar
  32. 32.
    Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)CrossRefGoogle Scholar
  33. 33.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)CrossRefGoogle Scholar
  34. 34.
    Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-oriented Modeling. Wiley, New York (1994) zbMATHGoogle Scholar
  35. 35.
    Smeenk, W.: Applying automata learning to complex industrial software. Master thesis, Radboud University Nijmegen, September 2012Google Scholar
  36. 36.
    Smetsers, R., Volpato, M., Vaandrager, F.W., Verwer, S.: Bigger is not always better: on the quality of hypotheses in active automata learning. In: ICGI, JMLR Proceedings, vol. 34, pp. 167–181 (2014)Google Scholar
  37. 37.
    Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  38. 38.
    Vasilevskii, M.P.: Failure diagnosis of automata. Cybern. Syst. Anal. 9(4), 653–665 (1973)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wouter Smeenk
    • 1
  • Joshua Moerman
    • 2
  • Frits Vaandrager
    • 2
  • David N. Jansen
    • 2
  1. 1.Océ Technologies B.V.VenloThe Netherlands
  2. 2.Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations