International Conference on Formal Engineering Methods

Formal Methods and Software Engineering pp 304-311 | Cite as

DFTCalc: Reliability Centered Maintenance via Fault Tree Analysis (Tool Paper)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9407)

Abstract

Reliability, availability, maintenance and safety (RAMS) analysis is essential in the evaluation of safety critical systems like nuclear power plants and the railway infrastructure. A widely used methodology within RAMS analysis are fault trees, representing failure propagations throughout a system. We present DFTCalc, a tool-set to conduct quantitative analysis on dynamic fault trees including the effect of a maintenance strategy on the system dependability.

Keywords

Dynamic fault trees Maintenance Reliability Context-dependent reduction 

References

  1. 1.
    Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure Comput. 7, 128–143 (2010)CrossRefGoogle Scholar
  3. 3.
    Boudali, H., Dugan, J.B.: A Bayesian network reliability modeling and analysis framework. IEEE Trans. Reliab. 55, 86–97 (2005)CrossRefGoogle Scholar
  4. 4.
    Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54, 754–775 (2011)CrossRefGoogle Scholar
  5. 5.
    Buchacker, K.: Modeling with extended fault trees. In: Proceeding of the 5th International Symposium on High Assurance Systems Engineering (HASE), pp. 238–246, November 2000Google Scholar
  6. 6.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transfer 13, 1–19 (2012)MATHGoogle Scholar
  7. 7.
    Guck, D., Katoen, J.P., Stoelinga, M.I.A., Luiten, T., Romijn, J.: Smart railroad maintenance engineering with stochastic model checking. In: Railway Technology: Research, Development and Maintenance. Civil-Comp, vol. 104, p. 299 (2014)Google Scholar
  8. 8.
    Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. Springer, Heidelberg (2002) CrossRefMATHGoogle Scholar
  10. 10.
    Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perf. Eval. 68(2), 90–104 (2011)CrossRefGoogle Scholar
  11. 11.
    Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D.: A tool for automatically translating dynamic fault trees into dynamic Bayesian networks. In: RAMS, pp. 434–441 (2006)Google Scholar
  12. 12.
    Ruijters, E.J.J., Stoelinga, M.I.A.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Elsevier Computing Surveys (2015)Google Scholar
  13. 13.
    Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: 29th Annual International Symposium on Fault-Tolerant Computing, pp. 232–235. IEEE (1999)Google Scholar
  14. 14.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U.S. Nuclear Regulatory Commision, Office of Nuclear Regulatory Reasearch (1981)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Formal Methods and ToolsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations