Advertisement

Model Checking \(\mu \)C/OS-III Multi-task System with TMSVL

  • Jin Cui
  • Zhenhua DuanEmail author
  • Cong TianEmail author
  • Nan Zhang
  • Conghao Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9407)

Abstract

\(\mu \)C/OS-III is the third generation of real-time operating systems based on multi-task scheduling for embedded systems. The multi-task system which refers to tasks with the same priority, tasks synchronization and communication, is scheduled by the operating system kernel. It is critical to ensure the timeliness and correctness of related applications using \(\mu \)C/OS-III. This paper proposes a model checking approach to verify a multi-task embedded system running under \(\mu \)C/OS-III. To do so, the multi-task system and its properties are modelled in TMSVL. A model checker built in the toolkit MSV is used to verify the schedulabilty of the \(\mu \)C/OS-III multi-task system. Experiments show that our approach is effective and efficient in verifying embedded systems.

Keywords

Model checking TMSVL Multi-task systems Schedulability \(\mu \)C/OS-III 

References

  1. 1.
    Abdeddaım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret. Comput. Sci. 354(4), 272–300 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mokadem, H.B., Berard, B., Gourcuff, V., De Smet, O., Roussel, J.-M.: Verification of a timed multitask system with uppaal. IEEE Trans. Autom. Sci. Eng. 7(4), 921–932 (2010)CrossRefGoogle Scholar
  3. 3.
    Bini, E., Buttazzo, G.C.: Schedulability analysis of periodic fixed priority systems. IEEE Trans. Comput. 53(11), 1462–1473 (2004)CrossRefGoogle Scholar
  4. 4.
    Bini, E., Buttazzo, G.C., Buttazzo, G.M.: Rate monotonic analysis: the hyperbolic bound. IEEE Trans. Comput. 52(7), 933–942 (2003)CrossRefGoogle Scholar
  5. 5.
    Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real-time preemptive systems. IEEE Trans. Softw. Eng. 30(2), 97–111 (2004)CrossRefGoogle Scholar
  6. 6.
    Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Program. 70(1), 31–61 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Han, M., Duan, Z., Wang, X.: Time constraints with temporal logic programming. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 266–282. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Huang, Y., Ferreira, J.F., He, G., Qin, S., He, J.: Deadline analysis of AUTOSAR OS periodic tasks in the presence of interrupts. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 165–181. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Labrosse, J.J.: uC/OS-III: The Real-Time Kernel. Micrium Press, Weston (2009)Google Scholar
  11. 11.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Madl, G., Dutt, N., Abdelwahed, S.: A conservative approximation method for the verification of preemptive scheduling using timed automata. In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2009, pp. 255–264 (2009)Google Scholar
  13. 13.
    Miku00ionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U., Pedersen, J.S., Hougaard, P.: Schedulability analysis using uppaal: Herschel-planck case study. In: Proceedings of the 4th International Conference on Leveraging Applications of Formal Methods, Verification, and Validation - Volume Part II (2010)Google Scholar
  14. 14.
    Pang, T., Duan, Z., Tian, C.: Symbolic model checking for propositional projection temporal logic. In: 2012 Sixth International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 9–16. IEEE (2012)Google Scholar
  15. 15.
    Rasmus, R.V., Trick, M.A.: Round robin scheduling-a survey. Eur. J. Oper. Res. 188(3), 617–636 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tian, C., Duan, Z.: Propositional Projection Temporal Logic, B\({\ddot{u}}\)chi Automata and \(\omega \)-Regular Expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 47–58. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Wasziwoski, L., Hanzalek, Z.: Model checking of multitasking real-time applications based on the timed automata model using one clock. Behavioral Modeling for Embedded Systems and Technologies: Applications for Design and Implementation: Applications for Design and Implementation, p. 194 (2009)Google Scholar
  18. 18.
    Waszniowski, L., Krákora, J., Hanzálek, Z.: Case study on distributed and fault tolerant system modeling based on timed automata. J. Syst. Softw. 82(10), 1678–1694 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ICTT and ISN LaboratoryXidian UniversityXi’anPeople’s Republic of China
  2. 2.College of Information Science and EngineeringNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations