Holonic Institutions for Multi-scale Polycentric Self-governance

  • Ada Diaconescu
  • Jeremy Pitt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9372)


Effective institutions are key to the success of self-governing systems, yet specifying and maintaining them can be challenging, especially in large-scale, highly dynamic and competitive contexts. Political economist Elinor Ostrom has studied the conventional arrangements for sustainable natural resource management and derived from these eight design principles for self-governing institutions. One principle, nested enterprises, is straightforwardly expressed, but is arguably structural rather than functional, and so is more resistant to declarative specification; yet it also appears to be critical to the effectiveness of complex compositional systems. In this paper, we converge the ideas of holonic systems with electronic institutions, to propose a formalisation of this principle based on holonic institutions. We show how holonic institutions provide a structural framework for nested enterprises, which can be designed as composite systems of systems. This, we believe, is compatible with Ostrom’s ideas for polycentric governance of complex systems. We use a case study in energy distribution to illustrate these ideas.


Electronic institutions Holonic architectures Multi-agent systems Self-organising systems Polycentric governance Smartgrids 



Jeremy Pitt was partially supported by the UK EPSRC Grand Challenge project The Autonomic Power System (EP/I031650/1).


  1. 1.
    Artikis, A.: Dynamic specification of open agent systems. J. Logic Comput. 22(6), 1301–1334 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cliffe, O., De Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 67–85. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    DeLoach, S.: OMACS: a framework for adaptive, complex systems. In: Dignum, V. (ed.) Multi-Agent Systems Semantics and Dynamics of Organisational Models. IGI Global, Hershey (2009)Google Scholar
  4. 4.
    Dignum, V., Dignum, F.: A logic of agent organizations. Logic J. IGPL 20(1), 216–283 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fischer, K.: Holonic multiagent systems – theory and applications. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 34–48. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  6. 6.
    Frey, S., Diaconescu, A., Menga, D., Demeure, I.: A holonic control architecture for a heterogeneous multi-objective smart micro-grid. In: IEEE 7th International Confrence on Self-Adaptive and Self-Organizing Systems (SASO), pp. 21–30 (2013)Google Scholar
  7. 7.
    García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.: Implementing norms in electronic institutions. In: Proceedings of the Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 667–673. ACM Press, NewYork (2005)Google Scholar
  8. 8.
    Hübner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems using the MOISE\(^{+}\) model. IJAOSE 1(3/4), 370–395 (2007)CrossRefGoogle Scholar
  9. 9.
    Koestler, A.: The Ghost in the Machine. Hutchinson Publisher, London (1967)Google Scholar
  10. 10.
    Kohler, T., Steghöfer, J.P., Busquets, D., Pitt, J.: The value of fairness: trade-offs in repeated dynamic resource allocation. In: Proceedings 8th IEEE Conference on Self-Adapting and Self-Organising Systems (SASO) (2014)Google Scholar
  11. 11.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4, 67–95 (1986)CrossRefGoogle Scholar
  12. 12.
    Minsky, N.: Law-Governed Interaction (LGI): A Distributed Coordination and Control Mechanism. Rutgers University (2005)Google Scholar
  13. 13.
    Nowak, A., Vallacher, R., Kus, M., Urbaniak, J.: The dynamics of societal transition: modeling non-linear change in the polish economic system. Int. J. Sociol. 35, 65–68 (2005)Google Scholar
  14. 14.
    Ostrom, E.: Beyond markets and states: polycentric governance of complex economic systems. In: Grandin, K. (ed.) Les Prix Nobel, The Nobel Prizes 2009, pp. 408–444. Nobel Foundation, Stockholm (2010)Google Scholar
  15. 15.
    Ostrom, E.: Thinking about climate change as a commons. In: 15th Annual Philip Gamble Memorial Lecture, pp. 1–34. UMass Amherst (2011)Google Scholar
  16. 16.
    Ostrom, E., Ahn, T.: Foundations of Social Capital. Edward Elgar Pub, Cheltenham (2003)Google Scholar
  17. 17.
    Ostrom, E.: Governing the commons. Cambridge University Pressm, Cambridge (1990)CrossRefGoogle Scholar
  18. 18.
    Patel, J., Teacy, W., Jennings, N., Luck, M., Chalmers, S., Oren, N., Norman, T., Preece, A., Gray, P., Shercliff, G., Stockreisser, P., Shao, J., Gray, W., Fiddian, N., Thompson, S.: Agent-based virtual organisations for the grid. Multiagent Grid Syst. 1(4), 237–249 (2005)zbMATHGoogle Scholar
  19. 19.
    Pitt, J., Busquets, D., Macbeth, S.: Distributive justice for self-organised common-pool resource management. ACM Trans. Auton. Adapt. Syst. 9(3), 14 (2014)CrossRefGoogle Scholar
  20. 20.
    Pitt, J., Schaumeier, J., Artikis, A.: Axiomatisation of socio-economic principles for self-organising institutions: concepts, experiments and challenges. ACM Trans. Auton. Adapt. Syst. 7(4), 39:1–39:39 (2012)CrossRefGoogle Scholar
  21. 21.
    RCEP: 28th report: Adapting institutions to climate change. Royal Commission on Environmental Protection, The Stationery Office Limited (2010)Google Scholar
  22. 22.
    Rescher, N.: Distributive Justice. Bobbs-Merrill, New York (1966)Google Scholar
  23. 23.
    Rodriguez, S., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: An analysis and design concept for self-organization in holonic multi-agent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 15–27. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  24. 24.
    Sanduleac, M., Eremia, M., Toma, L., Borza, P.: Integrating the electrical vehicles in the smart grid through unbundled smart metering and multi-objective virtual power plants. In: 2nd IEEE PES International Conference Innovative Smart Grid Technologies, ISGT Europe 2011, pp. 1–8 (2011)Google Scholar
  25. 25.
    SESIG: Smart Energy Special Interest Group: The role of community energy systems in the UK resilient energy supply. Technical report, Innovate UK (Technology Strategy Board) (2013)Google Scholar
  26. 26.
    Simon, H.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6), 467–482 (1962)Google Scholar
  27. 27.
    Steghöfer, J.P., Anders, G., Siefert, F., Reif, W.: A system of systems approach to the evolutionary transformation of power management systems. In: GI Jahrestagung, pp. 1500–1515 (2013)Google Scholar
  28. 28.
    Ulieru, M., Brennan, R., Walker, S.: The holonic enterprise: a model for internet-enabled global manufacturing supply chain and workflow management, integrated Manufacturing Systems. Integr. Manuf. Syst. 13(8), 538–550 (2002)CrossRefGoogle Scholar
  29. 29.
    Valckenaers, P., Brussel, H.V., Holvoet, T.: Fundamentals of holonic systems and their implications for self-adaptive and self-organizing systems. In: IEEE SASO Workshops (SASOW) (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Telecom ParisTechParis Cedex 13France
  2. 2.Imperial College LondonLondonUK

Personalised recommendations