Advertisement

Towards the Disruption of Plans

  • Andrada VoinitchiEmail author
  • Elizabeth Black
  • Michael Luck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9372)

Abstract

In order for an agent or a group of agents (such as a team) to achieve a goal, a sequence of actions have to be performed. These actions bring about state transitions that constitute a plan. Multiple ways of achieving the goal may exist. In some situations, one may want to prevent or delay an agent or group of agents from achieving a goal. We argue that plans can be disrupted by preventing particular state transitions from happening. We propose four algorithms to identify which state transitions should be thwarted such that the achievement of the goal is prevented (total disruption) or delayed (partial disruption). In order to evaluate the performance of our algorithms we define disruption (partial and total) and also provide metrics for its measurement. We do acknowledge that the disruptor may not always have an accurate representation of the disruptee’s plans. Thus, we perform an experimental analysis to examine the performance of the algorithms when some of the state transitions available to the disruptee are unknown to the disruptor.

References

  1. 1.
    Grosz, B.J., Hunsberger, L., Kraus, S.: Planning and acting together. AI Mag. 20(4), 23–34 (1999)Google Scholar
  2. 2.
    Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of the 6th National Conference on Artificial Intelligence, pp. 677–682 (1987)Google Scholar
  3. 3.
    d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 155–176. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  4. 4.
    Voinitchi, A., Black, E., Luck, M.: Introduction to team disruption mechanisms. In: Proceedings of the 2012 Imperial College Computing Student Workshop, pp. 149–155 (2012)Google Scholar
  5. 5.
    McDermott, D.: Robot planning. AI Mag. 13(2), 55–79 (1992)MathSciNetGoogle Scholar
  6. 6.
    Hanks, S., McDermott, D.: Modeling a dynamic and uncertain world: symbolic and probabilistic reasoning about change. Artif. Intell. 66(1), 1–55 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Porteous, J., Sebastia, L.: Extracting and ordering landmarks for planning. J. Artif. Intell. Res. 22(1), 215–278 (2004)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Schneier, B.: Attack trees: modeling security threats. Dr. Dobbs J. Softw. Tools 24(12), 21–29 (1999)Google Scholar
  9. 9.
    Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 80–95. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 49–64. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    TRESsPASS: The tresspass project (2015)Google Scholar
  14. 14.
    Carbonell, J.G.: Counterplanning: a strategy-based model of adversary planning in real-world situations. Artif. Intell. 16(3), 295–329 (1981)CrossRefGoogle Scholar
  15. 15.
    de Cote, E.M., Chapman, A., Sykulski, A.M., Jennings, N.: Automated planning in repeated adversarial games. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 376–383 (2010)Google Scholar
  16. 16.
    Willmott, S., Richardson, J., Bundy, A., Levine, J.: Applying adversarial planning techniques to go. Theor. Comput. Sci. 252(12), 45–82 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Huang, H., Ding, J., Zhang, W., Tomlin, C.J.: A differential game approach to planning in adversarial scenarios: a case study on capture the flag. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 1451–1456 (2011)Google Scholar
  18. 18.
    Tambe, M.: Towards flexible teamwork. J. Artif. Intell. Res. 7(1), 83–124 (1997)Google Scholar
  19. 19.
    Pynadath, D.V., Tambe, M.: Multiagent teamwork: analyzing the optimality and complexity of key theories and models. In: Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 873–880 (2002)Google Scholar
  20. 20.
    Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent systems using joint intentions. Artif. Intell. 75(2), 195–240 (1995)CrossRefGoogle Scholar
  21. 21.
    Jennings, N.R., Mamdani, E.H.: Using joint responsibility to coordinate collaborative problem solving in dynamic environments. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 269–275 (1992)Google Scholar
  22. 22.
    Fulkerson, D.R., Ford, L.R.: Maximal flow through a network. Can. J. Math. 8(1), 399–404 (1956)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 25(4), 921–940 (1988)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4), 601–640 (1996)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrada Voinitchi
    • 1
    Email author
  • Elizabeth Black
    • 1
  • Michael Luck
    • 1
  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations