Advertisement

Face Recognition Using Local PCA Filters

  • Yida Wang
  • Shasha Li
  • Jiani Hu
  • Weihong Deng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9428)

Abstract

We propose an efficient feature extraction architecture based on PCANet. Our method performs far better than many traditional artificial feature extraction methods with the help of standalone filter learning and multiscale local feature combination. Such structure cascaded by both linear layers with convolution filters and non-linear layers in binarization process shows better adaptability in different databases. With the help of parallel computing, training time is much shorter than PCANet and also more fixed compared to convolutional neural network. Experiment in LFW and FERET shows that such a data oriented structure shows good performance both on stability and accuracy in various environments.

Keywords

Feature extraction PCANet Filter learning Standalone training Multiscale Binarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan, T., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: A Simple Deep Learning Baseline for Image Classification? arXiv preprint, arXiv:1404.3606 (2014)
  2. 2.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)Google Scholar
  3. 3.
    Zeng, R., Wu, J., Shao, Z., Senhadji, L., Shu, H.: Multilinear Principal Component Analysis Network for Tensor Object Classification. Eprint Arxiv (2014)Google Scholar
  4. 4.
    Lei, Z., Pietikainen, M., Li, S.Z.: Learning Discriminant Face Descriptor. IEEE Transactions on PAMI 36(2), 289–302 (2014)CrossRefGoogle Scholar
  5. 5.
    Maturana, D., Mery, D., Soto, A.: Face recognition with decision tree-based local binary patterns. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 618–629. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Hussain, S.U., Napoleon, T., Jurie, F.: Face recognition using local quantized patterns. In: BMVC, Guildford, United Kingdom (2012)Google Scholar
  7. 7.
    Vu, N.S.: Exploring Patterns of Gradient Orientations and Magnitudes for Face Recognition. IEEE Transactions on Information Forensics and Security 8(2), 295–304 (2013)CrossRefGoogle Scholar
  8. 8.
    Chai, Z., Sun, Z., Mendez-Vazquez, H., He, R., Tan, T.: Gabor Ordinal Measures for Face Recognition. IEEE Transactions on Information Forensics and Security 9(1), 14–26 (2014)CrossRefGoogle Scholar
  9. 9.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report, pp. 07–49, University of Massachusetts, Amherst (2007)Google Scholar
  10. 10.
    Arashloo, S.R., Kittler, J.: Efficient processing of mrfs for unconstrained-pose face recognition. In: 2013 IEEE Sixth International Conference on BTAS, pp. 1–8 (2013)Google Scholar
  11. 11.
    Cui, Z., Li, W., Xu, D., Shan, S., Chen, X.: Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: 2013 IEEE Conference on CVPR, pp. 3554–3561 (2013)Google Scholar
  12. 12.
    Hussain, S., Triggs, B.: Visual recognition using local quantized patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 716–729. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  13. 13.
    Barkan, O., Weill, J., Wolf, L., Aronowitz, H.: Fast high dimensional vector multiplication face recognition. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1960–1967 (2013)Google Scholar
  14. 14.
    Simonyan, K., Parkhi, O.M., Vedaldi, A., Zisserman, A.: Fisher vector faces in the wild. In: BMVC (2013)Google Scholar
  15. 15.
    Li, H., Hua, G., Shen, X., Lin, Z., Brandt, J.: Eigen-PEP for video face recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 17–33. Springer, Heidelberg (2015) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations