Advertisement

Photoelectrochemical Water Splitting Using Photovoltaic Materials

  • Nicolas GaillardEmail author
  • Alexander Deangelis
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 32)

Abstract

In this chapter, we will focus on high performance PV (photovoltaic)-grade thin film materials for photoelectrochemical (PEC) water splitting applications. Using techno-economic analysis tools, we will show that achieving a high solar-to-hydrogen (STH) efficiency is by far the most important device attribute for affordable PEC hydrogen production. We will then introduce the concept of multi-junction PEC devices and establish their theoretical STH upper limit. Finally, we will present the PEC performances of one specific PV material with high potential for PEC hydrogen production: the copper chalcopyrite class.

Keywords

Hydrogen Production Water Splitting Photocurrent Density Hydrogen Production Rate Faradaic Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Braham RJ, Harris AT (2009) Ind Eng Chem Res 48:8890–8905CrossRefGoogle Scholar
  3. 3.
    Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625–627Google Scholar
  4. 4.
    Miller E, Marsen B, Paluselli D, Rocheleau R (2005) Electrochem Solid-State Lett 8:A247–A249CrossRefGoogle Scholar
  5. 5.
    Khaselev OK, Turner JA (1998) Science 280:425–427CrossRefGoogle Scholar
  6. 6.
    McCullagh C, Skillen N, Adams M, Robertson P (2011) J Chem Technol Biotechnol 86:1002–1017CrossRefGoogle Scholar
  7. 7.
    Chong MN, Jin B, Chow CW, Saint C (2010) Water Res 44:2997–3027CrossRefGoogle Scholar
  8. 8.
    King RR, Fetzer CM, Colter PC, Edmondson KM, Ermer JH, Cotal HL, Hojun Y, Stavrides AP, Kinsey G, Krut DD, Karam, NH (2002) PVSC 776–781Google Scholar
  9. 9.
    James BD, Baum GN, Perez J, Baum KN (2009) Technoeconomic analysis of PEC hydrogen production. Directed Technologies, Inc. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pec_technoeconomic_analysis.pdf
  10. 10.
    Pinaud BA, Benck JD, Seitz LC, Forman AJ, Jaramillo TF (2013) Energy Environ Sci 6:1983CrossRefGoogle Scholar
  11. 11.
    Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB (2014) Energy Environ Sci 7:3264–3278CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Dohrmann JK, Schaaf NS (1992) Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J Phys Chem 96:4558–4563CrossRefGoogle Scholar
  14. 14.
    Abdi FF, Van de Krol R (2012) J Phys Chem C 116(17):9398–9404Google Scholar
  15. 15.
    Gaillard N, Cole B, Marsen B, Kaneshiro J, Miller EL, Weinhardt L, Bär M, Heske C, Ahn K-S, Yan Y, Al-Jassim MM (2010) J Mater Res 25:45CrossRefGoogle Scholar
  16. 16.
    Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Nano Lett 11(11):4978–4984Google Scholar
  17. 17.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271CrossRefGoogle Scholar
  18. 18.
    Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) J J Appl Phys 40:561–563CrossRefGoogle Scholar
  19. 19.
    Huda MN, Yan Y, Moon C, Wei S, Jassim MM (2008) Phys Rev B 77:195102–195114CrossRefGoogle Scholar
  20. 20.
    Cole B, Marsen B, Miller EL, Yan Y, To B, Jones K, Ai-Jassim M (2008) J Phys Chem C 112:5213–5220CrossRefGoogle Scholar
  21. 21.
    D’Arienzo M, Siedl N, Sternig A, Scotti R, Morazzoni F, Bernardi J, Diwald OJ (2010) Phys Chem C 114:18067–18072CrossRefGoogle Scholar
  22. 22.
    Tokunaga S, Kato H, Kudo A (2001) Chem Mater 13:4624CrossRefGoogle Scholar
  23. 23.
    Abdi FF, Han L, Smets HM, Zeman M, Dand B, van de Krol R (2013) Nature Commun 4:2195CrossRefGoogle Scholar
  24. 24.
    Hardee KL, Bard AJ (1977) J Electrochem Soc 124:215CrossRefGoogle Scholar
  25. 25.
    Chen Z, Jaramillo TF, Deutsch TG, Shwarsctein AK, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) J Mater Res 25:3–16CrossRefGoogle Scholar
  26. 26.
    Dare-edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc, Faraday Trans 79:2027–2041CrossRefGoogle Scholar
  27. 27.
    Sivula K, Formal FL, Gratzel M (2011) ChemSusChem 18:432–449CrossRefGoogle Scholar
  28. 28.
    Vayssieres L, Sathe C, Butorin S, Shuh D, Nordgren J, Guo J (2005) J Adv Mater 17:2320–2323CrossRefGoogle Scholar
  29. 29.
    Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Nat Mater 10:456–461CrossRefGoogle Scholar
  30. 30.
    Gaillard N, Chang Y, Kaneshiro J, Deangelis A (2010) Miller EL Solar Hydrogen and Nanotechnology V. Proc SPIE 7770:77700 V–14Google Scholar
  31. 31.
    Lee WJ, Shinde PS, Go GH, Ramasamy E (2011) Int J Hydrogen 36:5262–5270CrossRefGoogle Scholar
  32. 32.
    Green MA (2009) Prog Photovoltaics 17:183CrossRefGoogle Scholar
  33. 33.
    Reece SY, Hamel JA, Thomas KS, Jarvi D, Esswein AJ, Nocera DG (2011) Science 334:645CrossRefGoogle Scholar
  34. 34.
    Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoonnad H, Karam N (2009) Energy Environ Sci 2:174–192CrossRefGoogle Scholar
  35. 35.
    Jackson P, Hariskos D, Pwalla M (2011) Prog Photovoltaics Res Appl 19:894CrossRefGoogle Scholar
  36. 36.
    Contreras M, Mansfield L, Egaas B, Li B, Romero M, Noufi R (2011) In: Proceeding of the 37th IEEE PVSCGoogle Scholar
  37. 37.
    Gaillard N, Prasher D, Kaneshiro J, Mallory S, Chong M (2013) MRS Online Proceedings Library 1558Google Scholar
  38. 38.
    Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K (2013) J Am Chem Soc 135:3733–3755CrossRefGoogle Scholar
  39. 39.
    Marsen B, Cole B, Miller EL (2008) Solar Mat Solar Cells 92:1054–1058CrossRefGoogle Scholar
  40. 40.
    Miller EL, Gaillard N, Kaneshiro J, DeAngelis A, Garland R (2010) Progress in new semiconductor materials classes for solar photoelectrolysis. Int J Energy Res 34:1215–1222CrossRefGoogle Scholar
  41. 41.
    Kelly NA, Gibson TL (2008) Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting. Int J Hydrogen Energy 33:6420–6643CrossRefGoogle Scholar
  42. 42.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar Water Splitting Cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  43. 43.
    Minggu LJ, Daud WRW, Kassim MB (2010) Int J Hydrogen Energy 35:5233CrossRefGoogle Scholar
  44. 44.
    Rocheleau R, Miller EL, Misra A (1998) Energy Fuels 12(1):3–10CrossRefGoogle Scholar
  45. 45.
    Jacobsson TJ, Fjällström V, Sahlberg M, Edvinsson T (2013) Energy Environ Sci 6:3676–3683CrossRefGoogle Scholar
  46. 46.
    Wang H, Deutsch T, Turner JA (2008) J Electrochem Soc 155:F91CrossRefGoogle Scholar
  47. 47.
    Ingler WB, Khan SUM (2006) Electrochem. Solid State Lett 9:G144–G146CrossRefGoogle Scholar
  48. 48.
    Luo J, Im JH, Mayer MT, Mayer M, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Han HJ, Gratzel M (2014) Science 345(6204)Google Scholar
  49. 49.
    Shockley W, Queisser H (1961) J Appl Phys 32:510–519CrossRefGoogle Scholar
  50. 50.
    Rocheleau RE, Miller EL (1997) Int J Hydrogen Energy 22:771–782CrossRefGoogle Scholar
  51. 51.
    Seitz LC, Chen Z, Forman AJ, Pinaud BA, Benck JD, Jaramillo TF (2014) ChemSusChem 7:1372CrossRefGoogle Scholar
  52. 52.
    Akhavan VA, Goodfellow BW, Panthani MG et al (2012) J Solid State Chem 189:2–12CrossRefGoogle Scholar
  53. 53.
    Todorov TK, Reuter KB, Mitzi DB (2010) Adv Mater 22:E156–E159CrossRefGoogle Scholar
  54. 54.
    Bär M, Bohne W, Rohrich J, Strub E, Lindner S, Lux-Steiner MC, Fischer ChH, Niesen TP, Karg F (2004) Appl Phys 96:3857CrossRefGoogle Scholar
  55. 55.
    Beck ME, Weiss T, Fischer D, Fiechter S, Jäger-Waldau A, Lux-Steiner M Ch (2000) Thin Solid Films 130–134Google Scholar
  56. 56.
    Kaneshiro J, Deangelis A, Gaillard N, Chang YC, Kowalczyk J, Miller E (2010) Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 002448–002451Google Scholar
  57. 57.
    Zhang L, Minegishi T, Kubota J, Domen K (2014) Phys Chem Chem Phys 16(13):6167–6174CrossRefGoogle Scholar
  58. 58.
    Nakada T, Ohbo H, Watanabe T, Nakazawa H, Matsui M, Kunioka A (1997) Solar Mat Solar Cells 49:285CrossRefGoogle Scholar
  59. 59.
    Merdes S, Mainz R, Klaer J, Meeder A, Rodriguez-Alvarez H, Schock HW, Lux-Steiner MCh, Klenk R (2011) Solar Mat Solar Cells 95:864CrossRefGoogle Scholar
  60. 60.
    Mainz R, Klenk R, Lux-Steiner MCh (2007) Thin Solid Films 515:5934CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hawaii Natural Energy InstituteHonoluluUSA

Personalised recommendations