Advertisement

Inverse-Free Scheme of G1 Type to Velocity-Level Inverse Kinematics of Redundant Robot Manipulators

  • Yunong Zhang
  • Liangyu He
  • Jingyao Ma
  • Ying Wang
  • Hongzhou Tan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9377)

Abstract

With the superiority of owning more degrees of freedom than ordinary robot manipulators, redundant robot manipulators have gotten much attention in recent years. In order to control the trajectory of the robot end-effector with a desired velocity, it is very popular to apply the inverse kinematics approaches, such as pseudo-inverse scheme. However, calculating the inverse of Jacobian matrix requires a lot of time. Thus base on gradient neural dynamics (GND), an inverse-free scheme is proposed at the joint-velocity level. The scheme is named G1 type as it uses GND once. In addition, two path tracking simulations based on five-link and six-link redundant robot manipulators illustrate the efficiency and the accuracy of the proposed scheme. What is more, the physical realizability of G1 type scheme is also verified by a physical experiment based on the six-link planar redundant robot manipulator hardware system.

Keywords

redundant robot manipulators control inverse-free scheme gradient neural dynamics path tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van, M., Kang, H.-J., Ro, Y.-S.: A robust fault detection and isolation scheme for robot manipulators based on neural networks. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 25–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Lee, S.C., Ahn, H.S.: Multiple manipulator cooperative control using disturbance estimator and consensus algorithm. In: American Control Conference, pp. 4002–4007. IEEE Press, San Francisco (2011)Google Scholar
  3. 3.
    Kim, C.S., Mo, E.J., Jie, M.S., Hwang, S.C., Lee, K.-W.: Image-based robust control of robot manipulators under jacobian uncertainty. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4681, pp. 502–510. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Zhou, J., Kang, H., Ro, Y.: Comparison of the observability Indices for robot calibration considering joint stiffness parameters. In: Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.) CCIS 2010, CCIS. vol. 93, pp. 372–380. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Liu, Y., Yu, Y., Jiang, C.: The Development of Redundant Robot Manipulators. Machine Design and Research 19(1), 24–27 (2003)Google Scholar
  6. 6.
    Dubey, R., Luh, J.: Redudant Robot Control for Higher Flexibility. In: IEEE International Conference on Robotics and Automation, pp. 1066–1072. IEEE Press, Raleigh (1987)Google Scholar
  7. 7.
    Zhang, Y., Wang, J.: A Dual Neural Network for Redundancy Resolution of Kinematically Redundant Manipulators Subject to Joint Limits and Joint Velocity Limits. IEEE Transactions on Neural Networks 13(3), 658–667 (2003)CrossRefGoogle Scholar
  8. 8.
    Bianco, C., Ghilardelli, F.: Real-Time Planner in the Operational Space for the Automatic Handling of Kinematic Constraints. IEEE Transactions on Automation Science and Engineering 11(3), 730–739 (2014)CrossRefGoogle Scholar
  9. 9.
    Moreno, J., Kelly, R.: Manipulator velocity field control with dynamic friction compensation. In: 42nd IEEE Conference on Decision and Control, pp. 3834–3839. IEEE Press, Hawaii (2003)Google Scholar
  10. 10.
    Cheng, L., Hou, Z., Tan, M.: Adaptive Neural Network Tracking Control for Manipulators with Uncertain Kinematics, Dynamics and Actuator Model. Automatica 45(10), 2312–2318 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cheah, C., Kawamura, S., Arimoto, S.: Stability of Hybrid Position and Force Control for Robotic Manipulator with Kinematics and Dynamics Uncertainties. Automatica 39(5), 847–855 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cheng, L., Hou, Z., Tan, M., Lin, Y., Zhang, W.: Neural-Network-Based Adaptive Leader-Following Control for Multiagent Systems with Uncertainties. IEEE Transactions on Neural Network 21(8), 1351–1358 (2010)CrossRefGoogle Scholar
  13. 13.
    Tarokh, M., Kim, M.: Inverse Kinematics of 7-DOF Robots and Limbs by Decomposition and Approximation. IEEE Transactions on Robotics 23(3), 595–600 (2007)CrossRefGoogle Scholar
  14. 14.
    Falco, P., Natale, C.: On the Stability of Closed-Loop Inverse Kinematics Algorithms for Redundant Robots. IEEE Transactions on Robotics 27(3), 780–784 (2011)CrossRefGoogle Scholar
  15. 15.
    Tchon, K.: Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators. IEEE Transactions on Robotics 24(6), 1440–1445 (2008)CrossRefGoogle Scholar
  16. 16.
    Jin, L., Zhang, Y.: G2-Type SRMPC Scheme for Synchronous Manipulation of Two Redundant Robot Arms. IEEE Transactions on Cybernetics 45(2), 153–164 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Yi, C., Guo, D., Zheng, J.: Comparison on Zhang Neural Dynamics and Gradient-Based Neural Dynamics for Online Solution of Nonlinear Time-Varying Equation. Neural Computing and Applications 20(1), 1–7 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y.-N., Yi, C., Ma, W.: Comparison on gradient-based neural dynamics and zhang neural dynamics for online solution of nonlinear equations. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) ISICA 2008. LNCS, vol. 5370, pp. 269–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Bowling, M., Veloso, M.: Convergence of gradient dynamics with a variable learning rate. In: 18th International Conference on Machine Learning, pp. 27–34. Morgan Kaufmann, Williamstown (2001)Google Scholar
  20. 20.
    Ma, X., Elia, N.: A distributed continuous-time gradient dynamics approach for the active power loss minimizations. In: 51th Annual Allerton Conference, pp. 100–106. IEEE Press, Illinois (2013)Google Scholar
  21. 21.
    Taylor, P., Day, T.: Evolutionary Stability under the Replicator and the Gradient Dynamics. Evolutionary Ecology 11(5), 579–590 (1997)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Li, Z., Guo, D., Ke, Z., Peng, C.: Discrete-Time ZD, GD and NI for Solving Nonlinear Time-Varying Equations. Numerical Algrithms 64, 721–740 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Luo, F., Yin, Y., Liu, J., Yu, X.: Singularity-conquering ZG controller for output tracking of a class of nonlinear systems. In: 32nd Chinese Control Conference, pp. 477–482. IEEE Press, Xi’an (2013)Google Scholar
  24. 24.
    Zhang, Y., Yin, Y., Wu, H., Guo, D.: Dynamics and gradient dynamics with tracking-control application. In: 5th International Symposium on Computational Intelligence and Design, pp. 235–238. IEEE Press, Hangzhou (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  • Yunong Zhang
    • 1
    • 2
    • 3
  • Liangyu He
    • 1
    • 2
    • 3
  • Jingyao Ma
    • 1
    • 2
    • 3
  • Ying Wang
    • 1
    • 2
    • 3
  • Hongzhou Tan
    • 1
    • 2
  1. 1.School of Information Science and TechnologySun Yat-sen University (SYSU)GuangzhouChina
  2. 2.SYSU-CMU Shunde International Joint Research InstituteShundeChina
  3. 3.Key Laboratory of Autonomous Systems and Networked ControlMinistry of EducationGuangzhouChina

Personalised recommendations