Conductive Polymer Hydrogels

  • Damia MawadEmail author
  • Antonio Lauto
  • Gordon G. Wallace
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Combining electrical properties with synthetic scaffolds such as hydrogels is an attractive approach for the design of the ideal synthetic soft tissue, one that mimics the architecture of the native extracellular matrix and provides the electronic functionality needed for cell–cell communication. Conducting polymers (CPs) are carbon-based polymers that are electronically active and consequently are being investigated as the structural material for fabrication of electroactive hydrogels. CPs are attractive in that they could be processed in various forms, their chemistry could be modified to introduce different functionalities and most important is their capability to conduct electrons. In this chapter, electroconductive hydrogels (ECHs) fabricated from CP either as a single component or as an additive to conventional hydrogel networks are reviewed.


Conducting polymer Hydrogel Electroconductive Single component Hybrid 



Three dimensional


Alternating current


Adipoyl dihydrazide


Ammonium persulfate


Basic fuchsine


Chemically converted graphene


Carbon nanotube


Conducting polymer


Cetyl trimethyl ammonium bromide


Direct current






Electroconductive hydrogel






Fourier transform infrared


Gadolinium ion


Graphene oxide


Human mesenchymal stem cell


Inhibitory concentration


Low molecular weight gelator


Sodium 4-[4′-(dimethylamino)phenyldiazo] phenylsulfonate




Phosphate buffer solution


Polycaprolactone fumarate




Poly(ethylene glycol)


5,5′-(1,3,5,7-tetraoxopyrrolo[3,4-f]isoindole-2,6-diyl)diisophthalic acid




Poly(3-((S)-5-amino-5-carboxyl-3-oxapentyl)-2,5-thiophene) hydrochloride


Poly(3-thiophene acetic acid)




Quartz crystal microbalance


Reduced graphene oxide


Reactive oxygen species


Scanning electron microscopy


Single wall nanotube



D.M. would like to acknowledge the Marie Curie International Incoming Fellowship for financial support. G.G.W. acknowledges the support of an ARC Australian Laureate Fellowship.


  1. 1.
    Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–123CrossRefGoogle Scholar
  2. 2.
    Bendrea AD, Cianga L, Cianga I (2011) Progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl 26:3–84CrossRefGoogle Scholar
  3. 3.
    Mawad D, Boughton EA, Boughton P, Lauto A (2012) Advances in hydrogels applied to degenerative diseases. Curr Pharm Des 18:2558–2575CrossRefGoogle Scholar
  4. 4.
    Wijsboom YH, Patra A, Zade SS, Sheynin Y, Li M, Shimon LJ, Bendikov M (2009) Controlling rigidity and planarity in conjugated polymers: poly(3,4-ethylenedithioselenophene). Angew Chem Int Ed 48:5443–5447CrossRefGoogle Scholar
  5. 5.
    Amrutha SR, Jayakannan M (2008) Probing the pi-stacking induced molecular aggregation in pi-conjugated polymers, oligomers, and their blends of p-phenylenevinylenes. J Phys Chem B 112:1119–1129CrossRefGoogle Scholar
  6. 6.
    Shirakawa SR, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16:578–580CrossRefGoogle Scholar
  7. 7.
    Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850CrossRefGoogle Scholar
  8. 8.
    Malliaras G, Friend R (2005) An organic electronics primer. Phys Today 58:53–58CrossRefGoogle Scholar
  9. 9.
    Harrison WA (1979) Solid state theory. Dover Publications Inc, New YorkGoogle Scholar
  10. 10.
    Dai L (1999) Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications. J Macromol Sci Rev Macromol Chem Phys C 39:273–387CrossRefGoogle Scholar
  11. 11.
    van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9Google Scholar
  12. 12.
    Smits FM (1957) Measurement of sheet resistivities with the four-point probe. Bell Syst Tech J 37:711–718CrossRefGoogle Scholar
  13. 13.
    Giri G, Verploegen E, Mansfield SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z (2011) Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480:504–508CrossRefGoogle Scholar
  14. 14.
    Lai W, Haile SM (2005) Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J Am Ceram Soc 88:2979–2997CrossRefGoogle Scholar
  15. 15.
    Rubinson JF, Kayinamura YP (2009) Charge transport in conducting polymers: insights from impedance spectroscopy. Chem Soc Rev 38:3339–3347CrossRefGoogle Scholar
  16. 16.
    Bobacka J, Lewenstam A, Ivaska A (2000) Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 489:17–27CrossRefGoogle Scholar
  17. 17.
    Gilmore K, Hodgson AJ, Luan B, Small CJ, Wallace GG (1994) Preparation of hydrogel/conducting polymer composites. Polym Gels Netw 2:135–143CrossRefGoogle Scholar
  18. 18.
    Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716CrossRefGoogle Scholar
  19. 19.
    Green RA, Baek S, Poole-Warren LA, Martens PJ (2010) Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mater 11:014107CrossRefGoogle Scholar
  20. 20.
    Hardy JG, Lee JY, Schmidt CE (2013) Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotechnol 24:847–854CrossRefGoogle Scholar
  21. 21.
    Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353CrossRefGoogle Scholar
  22. 22.
    Molino PJ, Wallace GG (2015) Next generation bioelectronics: advances in fabrication coupled with clever chemistries enable the effective integration of biomaterials and organic conductors. APL Mater 3:014913CrossRefGoogle Scholar
  23. 23.
    Hur J, Im K, Kim SW, Kim J, Chung DY, Kim TH, Jo KH, Hahn JH, Bao Z, Hwang S, Park N (2014) Polypyrrole/Agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8:10066–10076CrossRefGoogle Scholar
  24. 24.
    Park S, Yang G, Madduri N, Abidian MR, Majd S (2014) Hydrogel-mediated direct patterning of conducting polymer films with multiple surface chemistries. Adv Mater 26:2782–2787CrossRefGoogle Scholar
  25. 25.
    Kotanen CN, Wilson AN, Dong C, Dinu CZ, Justin GA, Guiseppi-Elie A (2013) The effect of the physicochemical properties of bioactive electroconductive hydrogels on the growth and proliferation of attachment dependent cells. Biomaterials 34:6318–6327CrossRefGoogle Scholar
  26. 26.
    Huang H, Wu J, Lin X, Li L, Shang S, Yuen MC, Yan G (2013) Self-assembly of polypyrrole/chitosan composite hydrogels. Carbohydr Polym 95:72–76CrossRefGoogle Scholar
  27. 27.
    Kotanen CN, Tlili C, Guiseppi-Elie A (2012) Bioactive electroconductive hydrogels: the effects of electropolymerization charge density on the storage stability of an enzyme-based biosensor. Appl Biochem Biotechnol 166:878–888CrossRefGoogle Scholar
  28. 28.
    Runge MB, Dadsetan M, Baltrusaitis J, Ruesink T, Lu L, Windebank AJ, Yaszemski MJ (2010) Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration. Biomacromolecules 11:2845–2853CrossRefGoogle Scholar
  29. 29.
    Justin G, Guiseppi-Elie A (2009) Characterization of electroconductive blends of poly(HEMA-co-PEGMA-co-HMMA-co-SPMA) and poly(Py-co-PyBA). Biomacromolecules 10:2539–2549CrossRefGoogle Scholar
  30. 30.
    Chansai P, Sirivat A, Niamlang S, Chotpattananont D, Viravaidya-Pasuwat K (2009) Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int J Pharm 381:25–33CrossRefGoogle Scholar
  31. 31.
    Li Y, Neoh KG, Kang ET (2005) Controlled release of heparin from polypyrrole-poly(vinyl alcohol) assembly by electrical stimulation. J Biomed Mater Res A 73:171–181CrossRefGoogle Scholar
  32. 32.
    Hao GP, Hippauf F, Oschatz M, Wisser FM, Leifert A, Nickel W, Mohamed-Noriega N, Zheng Z, Kaskel S (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 8:7138–7146CrossRefGoogle Scholar
  33. 33.
    Vega-Rios A, Olmedo-Martínez JL, Farías-Mancilla B, Hernández-Escobar CA, Zaragoza-Contreras EA (2014) Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites. Carbohydr Polym 110:78–86CrossRefGoogle Scholar
  34. 34.
    Ding H, Zhong M, Kim YJ, Pholpabu P, Balasubramanian A, Hu CM, He H, Yang H, Matyjaszewski K, Bettinger CJ (2014) Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano 8:4348–4357CrossRefGoogle Scholar
  35. 35.
    Ma D, Zhang LM (2013) Novel biosensing platform based on self-assembled supramolecular hydrogel. Mater Sci Eng C Mater Biol Appl 33:2632–2638CrossRefGoogle Scholar
  36. 36.
    Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2:218–227CrossRefGoogle Scholar
  37. 37.
    Bayramoglu G, Altintas B, Arica MY (2013) Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking. Appl Microbiol Biotechnol 97:1149–1159CrossRefGoogle Scholar
  38. 38.
    Marcasuzaa P, Reynaud S, Ehrenfeld F, Khoukh A, Desbrieres J (2010) Chitosan-graft-polyaniline-based hydrogels: elaboration and properties. Biomacromolecules 11:1684–1691CrossRefGoogle Scholar
  39. 39.
    Paradee N, Sirivat A (2014) Electrically controlled release of benzoic acid from poly(3,4-ethylenedioxythiophene)/alginate matrix: effect of conductive poly(3,4-ethylenedioxythiophene) morphology. J Phys Chem B 118:9263–9271CrossRefGoogle Scholar
  40. 40.
    Sasaki M, Karikkineth BC, Nagamine K, Kaji H, Torimitsu K, Nishizawa M (2014) Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Adv Healthc Mater 3:1919–1927CrossRefGoogle Scholar
  41. 41.
    Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG (2012) Hybrid conducting polymer-hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthc Mater 1:762–767CrossRefGoogle Scholar
  42. 42.
    Chikar JA, Hendricks JL, Richardson-Burns SM, Raphael Y, Pfingst BE, Martin DC (2012) The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 33:1982–1990CrossRefGoogle Scholar
  43. 43.
    Lu Y, Li Y, Pan J, Wei P, Liu N, Wu B, Cheng J, Lu C, Wang L (2012) Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials 33:378–394CrossRefGoogle Scholar
  44. 44.
    Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M (2011) Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11:513–517CrossRefGoogle Scholar
  45. 45.
    Sekine S, Ido Y, Miyake T, Nagamine K, Nishizawa M (2010) Conducting polymer electrodes printed on hydrogel. J Am Chem Soc 132:13174–13175CrossRefGoogle Scholar
  46. 46.
    Kim DH, Wiler JA, Anderson DJ, Kipke DR, Martin DC (2010) Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater 6:57–62CrossRefGoogle Scholar
  47. 47.
    Naficy S, Razal JM, Spinks GM, Wallace GG, Whitten PG (2012) Electrically conductive, tough hydrogels with pH sensitivity. Chem Mater 24:3425–3433CrossRefGoogle Scholar
  48. 48.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefGoogle Scholar
  49. 49.
    Sirivisoot S, Pareta R, Harrison BS (2013) Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus 4:20130050CrossRefGoogle Scholar
  50. 50.
    Lin J, Tang Q, Wu J, Li Q (2010) A multifunctional hydrogel with high-conductivity, pH-responsive, and release properties from polyacrylate/polypyrrole. J Appl Polym Sci 116:1376–1383CrossRefGoogle Scholar
  51. 51.
    Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219CrossRefGoogle Scholar
  52. 52.
    Barbarella G, Melucci M, Sotgiu G (2005) The versatile thiophene: an overview of recent research on thiophene-based materials. Adv Mater 17:1581–1593CrossRefGoogle Scholar
  53. 53.
    Das S, Chatterjee DP, Ghosh R, Nandi AK (2015) Water soluble polythiophenes: preparation and applications. RSC Adv 5:20160–20177CrossRefGoogle Scholar
  54. 54.
    Kim BS, Chen L, Gong JP, Osada Y (1999) Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acids. Macromolecules 32:3964–3969CrossRefGoogle Scholar
  55. 55.
    Chen L, Kim BS, Nishino M, Gong JP, Osada Y (2000) Environmental responses of polythiophene hydrogels. Macromolecules 33:1232–1236CrossRefGoogle Scholar
  56. 56.
    Mawad D, Stewart E, Officer DL, Romeo T, Wagner P, Wagner K, Wallace GG (2012) A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct Mater 22:2692–2699CrossRefGoogle Scholar
  57. 57.
    Mawad D, Gilmore K, Molino P, Wagner K, Wagner P, Officer DL, Wallace GG (2011) An erodible polythiophenebased composite for biomedical applications. J Mater Chem 21:5555–5560CrossRefGoogle Scholar
  58. 58.
    Asberg P, Bjork P, Hook F, Inganas O (2005) Hydrogels from a water-soluble zwitterionic polythiophene: dynamics under pH change and biomolecular interactions observed using quartz crystal microbalance with dissipation monitoring. Langmuir 21:7292–7298CrossRefGoogle Scholar
  59. 59.
    Hanabusa K, Suzuki M (2014) Development of low-molecular-weight gelators and polymer-based gelators. Polym J 46:776–782CrossRefGoogle Scholar
  60. 60.
    Bairi P, Chakraborty P, Shit A, Mondal S, Roy B, Nandi AK (2014) A co-assembled gel of a pyromellitic dianhydride derivative and polyaniline with optoelectronic and photovoltaic properties. Langmuir 30:7547–7555CrossRefGoogle Scholar
  61. 61.
    Chakraborty P, Bairi P, Mondal S, Nandi AK (2014) Co-assembled conductive hydrogel of N-fluorenylmethoxycarbonyl phenylalanine with polyaniline. J Phys Chem B 118:13969–13980CrossRefGoogle Scholar
  62. 62.
    Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. PNAS 109:9287–9292CrossRefGoogle Scholar
  63. 63.
    Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546CrossRefGoogle Scholar
  64. 64.
    Du R, Xu Y, Luo Y, Zhang X, Zhang J (2011) Synthesis of conducting polymer hydrogels with 2D building blocks and their potential-dependent gel-sol transitions. Chem Commun 47:6287–6289CrossRefGoogle Scholar
  65. 65.
    Du R, Zhang X (2012) Alkoxysulfonate-functionalized poly(3,4 - ethylenedioxythiophene) hydrogels. Acta Phys Chim Sin 28:2305–2314Google Scholar
  66. 66.
    Chang X, Chen D, Jiao X (2010) Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer 51:3801–3807CrossRefGoogle Scholar
  67. 67.
    Lu Y, He W, Cao T, Guo H, Zhang Y, Li Q, Shao Z, Cui Y, Zhang X (2014) Elastic, conductive, polymeric hydrogels and sponges. Sci Rep 4:5792CrossRefGoogle Scholar
  68. 68.
    Myers RE (1986) Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. J Electron Mater 15:61–69CrossRefGoogle Scholar
  69. 69.
    Wei D, Lin X, Li L, Shang S, Yuen MC, Yan G, Yu X (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836CrossRefGoogle Scholar
  70. 70.
    Antonio J, Lira LM, Goncales VR, Cordoba de Torresi SI (2013) Fully conducting hydro-sponges with electro-swelling properties tuned by synthetic parameters. Electrochim Acta 101:216–224CrossRefGoogle Scholar
  71. 71.
    Gao H, Duan H (2015) 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65:404–419CrossRefGoogle Scholar
  72. 72.
    Cirillo G, Hampel S, Spizzirri UG, Parisi OI, Iemma F (2014) Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. Biomed Res Int 2014, article ID 825017Google Scholar
  73. 73.
    Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281CrossRefGoogle Scholar
  74. 74.
    Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417CrossRefGoogle Scholar
  75. 75.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  76. 76.
    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRefGoogle Scholar
  77. 77.
    Thompson BC, Murray E, Wallace GG (2015) Graphite oxide to graphene. Biomaterials to bionics. Adv Mater. doi:  10.1002/adma.201500411
  78. 78.
    Lee Y, Bae JW, Hoang Thi TT, Park KM, Park KD (2015) Injectable and mechanically robust 4-arm PPO-PEO/graphene oxide composite hydrogels for biomedical applications. Chem Commun 51:8876–8879CrossRefGoogle Scholar
  79. 79.
    Xie X, Hu K, Fang D, Shang L, Tranc SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002CrossRefGoogle Scholar
  80. 80.
    Du G, Nie L, Gao G, Sun Y, Hou R, Zhang H, Chen T, Fu J (2015) Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol). ACS Appl Mater Inter 7:3003–3008CrossRefGoogle Scholar
  81. 81.
    Sayyar S, Murray E, Thompson BC, Chung J, Officer DL, Gambhir S, Spinks GM, Wallace GG (2015) Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B 3:481–490CrossRefGoogle Scholar
  82. 82.
    Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRefGoogle Scholar
  83. 83.
    Yang X, Qiu L, Cheng C, Wu Y, Ma ZF, Li D (2011) Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew Chem Int Ed 50:7325–7328CrossRefGoogle Scholar
  84. 84.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  85. 85.
    Chatterjee S, Lee MW, Woo SH (2009) Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes. Carbon 47:2933–2936CrossRefGoogle Scholar
  86. 86.
    Lee CK, Shin SR, Mun JY, Han SS, So I, Jeon JH, Kang TM, Kim SI, Whitten PG, Wallace GG, Spinks GM, Kim SJ (2009) Tough supersoft sponge fibers with tunable stiffness from a DNA self-assembly technique. Angew Chem Int Ed 48:5116–5120CrossRefGoogle Scholar
  87. 87.
    Ramón-Azcón J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, Shiku H, Ramalingam M, Nakajima K, Sakka Y, Khademhosseini A, Matsue T (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25:4028–4034CrossRefGoogle Scholar
  88. 88.
    Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim S, Nikkhah M, Khabiry M, Azize M, Kong J, Wan K, Palacios T, Dokmeci MR, Bae H, Tang X, Khademhosseini A (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369CrossRefGoogle Scholar
  89. 89.
    Liau B, Zhang D, Bursca N (2012) Functional cardiac tissue engineering. Regen Med 7:187–206CrossRefGoogle Scholar
  90. 90.
    Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z, Zhao Y, Li X, Han Y, Duan C, Tang R, Wang C, Zhong W, Liu J, Luo Y, Xing M, Wang C (2013) Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep 4:3733CrossRefGoogle Scholar
  91. 91.
    Ahadian S, Ramon-Azcon J, Estili M, Liang X, Ostrovidov S, Shiku H, Ramalingam M, Nkjima K, Sakka Y, Bae H, Matsue T, Khademhosseini A (2014) Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Sci Rep 4:4271CrossRefGoogle Scholar
  92. 92.
    Kostarelo K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26:774–776CrossRefGoogle Scholar
  93. 93.
    Rodriguez-Yanez Y, Munoz B, Albores A (2013) Mechanisms of toxicity by carbon nanotubes. Toxicol Mech Methods 23:178–195CrossRefGoogle Scholar
  94. 94.
    von Der Mark K, Park J, Bauer S, Schmuki P (2010) Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 339:131–153CrossRefGoogle Scholar
  95. 95.
    Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359CrossRefGoogle Scholar
  96. 96.
    Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458CrossRefGoogle Scholar
  97. 97.
    Li L, Shi Y, Pan L, Shia Y, Yu G (2015) Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J Mater Chem B 3:2920–2930CrossRefGoogle Scholar
  98. 98.
    Asberg P, Inganas O (2003) Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. Biosense Bioelectron 19:199–207CrossRefGoogle Scholar
  99. 99.
    Mano N, Yoo JE, Tarver J, Loo YL, Heller A (2007) An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase. J Am Chem Soc 129:7006–7007CrossRefGoogle Scholar
  100. 100.
    Singh RP (2012) Prospects of organic conducting polymer modified electrodes: enzymosensors. Int J Electrochem 2012, article ID 502707Google Scholar
  101. 101.
    Lupu S, Lete C, Balaure PC, Caval DI, Mihailciuc C, Lakard B, Hihn JY, del Campo FJ (2013) Development of amperometric biosensors based on nanostructured tyrosinase-conducting polymer composite electrodes. Sensors 13:6759–6774CrossRefGoogle Scholar
  102. 102.
    Svirskis D, Travas-Sejdic J, Rodgers A, Garg S (2010) Electrochemically controlled drug delivery based on intrinsically conducting polymers. J Control Release 146:6–15CrossRefGoogle Scholar
  103. 103.
    Thompson BC, Moulton SE, Ding J, Richardson R, Cameron A, O’Leary S, Wallace GG, Clark GM (2006) Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 116:285–294CrossRefGoogle Scholar
  104. 104.
    Zhou QX, Miller LL, Valentine JR (1989) Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly(N-methylpyrrole)/ polyanion composite redox polymers. J Electroanal Chem 261:147–164CrossRefGoogle Scholar
  105. 105.
    Barthus RC, Lira LM, Córdoba de Torresi SI (2008) Conducting polymer- hydrogel blends for electrochemically controlled drug release devices. J Braz Chem Soc 19:630–636CrossRefGoogle Scholar
  106. 106.
    Guo B, Lei B, Li P, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2:47–57CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Damia Mawad
    • 1
    • 2
    Email author
  • Antonio Lauto
    • 3
  • Gordon G. Wallace
    • 4
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.School of Materials Science and EngineeringUNSWSydneyAustralia
  3. 3.Bioelectronics and Neuroscience (BENS) Research GroupUniversity of Western SydneySydneyAustralia
  4. 4.Intelligent Polymer Research Institute, ARC Center of Excellence for Electromaterials ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations