Introduction to LiDAR in Geoarchaeology from a Technological Perspective

Chapter
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

LiDAR is a remote sensing method established in the geosciences for capturing highly accurate three-dimensional geodata. It is increasingly used to support geoarchaeological research due to a range of advantages, including survey-grade data quality, real 3D geodata, nonselective coverage of scenes with high measurement density, on-demand data capturing, and comprehensive filtering options based on geometric and radiometric information.

Different LiDAR measurement principles are used to derive 3D geodata, e.g., time-of-flight, phase shift, and structured light. The captured datasets include real 3D XYZ coordinates (point clouds). Depending on the sensor system, also radiometric information is gathered for each point, e.g., RGB, strength, and full waveform of the backscattered signal.

The processing of point clouds in general follows a similar workflow. After data acquisition, the point clouds are registered. Depending on available radiometric information and research question, the data is radiometrically calibrated. After removing outliers, the point cloud is filtered according to the requirements of the study, and derivative products (e.g., DTMs) are generated (Chaps.  12 and  13). Finally, geospatial analyses are conducted directly in the final point cloud or derived elevation models (e.g., raster datasets, TINs), and the data can be used for visualization purposes.

With LiDAR, a wide range of spatial scales can be captured: (1) Object scale: single objects and their surfaces can be captured in high detail, allowing for studies, e.g., of engravings. (2) On-site scale: specific areas or objects like excavation sites or building complexes are surveyed and documented with static or dynamic scanners applied on-site (TLS, ULS, etc.). Such datasets covering sites of tens or several hundreds of meters are used in studies which examine the local spatial relations of objects and their immediate surroundings (see also Chap.  13). (3) Off-site scale: on a spatial scale covering whole regions, off-site scanning, mainly from an airborne platform, is applied.

However, the LiDAR method has some shortcomings, e.g., high costs for equipment, trained personnel, and processing the large amounts of data. Here, low-cost approaches can offer complementary data sources.

The described workflow leads to important implications for DGA regarding the filtering and calculation of derivatives. There is no universal filter but only tailored filters, depending on the available data and the aim of the study. Furthermore, the original, raw point cloud should always be available to enable subsequent analyses with new methods or different aims and objects of interest.

Emerging fields offering new possibilities for LiDAR in DGA are, e.g., multi-platform and multi-sensor approaches, the combination of spatial scales, multi-wavelength devices, multi-temporal datasets, and refined filtering based on radiometric information, e.g., full waveform.

Keywords

LiDAR Laser scanning 3D spatial data processing 3D models Geometry Radiometry Active remote sensing 

References

  1. Auer M, Agugiaro G, Billen N, Loos L, Zipf A (2014) Web-based visualization and query of semantically segmented multiresolution 3D models in the field of cultural heritage. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-5:33–39. https://doi.org/10.5194/isprsannals-II-5-33-2014 CrossRefGoogle Scholar
  2. Bennett R, Welham K, Hill RA, Ford A (2013) Using LiDAR as part of a multi-sensor approach to archaeological survey and interpretation. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, OxfordGoogle Scholar
  3. Beraldin JA, Blais F, Lohr U (2010) Laser scanning technology. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning. CRC Press, Boca RatonGoogle Scholar
  4. Bevan A, Li X, Martinón-Torres M, Green S, Xia Y, Zhao K, Zhao Z, Ma S, Cao W, Rehren T (2014) Computer vision, archaeological classification and China’s terracotta warriors. J Archaeol Sci 49:249–254. https://doi.org/10.1016/j.jas.2014.05.014 CrossRefGoogle Scholar
  5. Boeder V, Kersten T, Thies Th, Sauer A (2011) Mobile laser scanning on board hydrographic survey vessels – applications and accuracy investigations. In: Proceedings of FIG working week 2011, Marrakech, Marocco, 18–22 May 2011Google Scholar
  6. Böhler W, Heinz G (1999) Documentation, surveying, photogrammetry. In: Proceedings of XVII CIPA symposium, Olinda, Brazil, 3–6 Oct 1999Google Scholar
  7. Bondarev E, Heredia F, Favier R, Lingni M, de With PHN (2013) On photo-realistic 3D reconstruction of large-scale and arbitrary-shaped environments. IEEE consumer communications and networking conference, Las Vegas, 11–14 Jan 2013. https://doi.org/10.1109/CCNC.2013.6488511
  8. Briese C (2010) Extraction of digital terrain models. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning. CRC Press, Boca RatonGoogle Scholar
  9. Briese C, Pfennigbauer M, Ullrich A, Doneus M (2013) Multi-wavelength airborne laser scanning for archaeological prospection. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5/W2:119–124CrossRefGoogle Scholar
  10. Brodu N, Lague D (2012) Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criteria: applications in geomorphology. J Photogramm Remote Sens 68:121–134. https://doi.org/10.1016/j.isprsjprs.2012.01.006 CrossRefGoogle Scholar
  11. Challis K, Howard AJ (2013) The role of LiDAR intensity data in interpreting environmental and cultural archaeological landscapes. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, OxfordGoogle Scholar
  12. Diskin S, Heyvaert VMA, Pavlopoulos K, Schütt B (2013) Geoarchaeology: a toolbox of approaches applied in a multidisciplinary research discipline. Quat Int 308–309:1–3. https://doi.org/10.1016/j.quaint.2013.09.004 CrossRefGoogle Scholar
  13. Doneus M, Briese C, Studnicka N (2010) Analysis of full-waveform ALS data by simultaneously acquired TLS data: towards an advanced DTM generation in wooded areas. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII(7B):193–198Google Scholar
  14. Doneus M, Doneus N, Briese C, Pregesbauer M, Mandlburger G, Verhoeven G (2013) Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air. J Archaeol Sci 40(4):2136–2151. https://doi.org/10.1016/j.jas.2012.12.021 CrossRefGoogle Scholar
  15. Elbering SO, Khoshelham K (2015) Automatic extraction of railroad centerlines from mobile laser scanning data. Remote Sens 7(5):5565–5583. https://doi.org/10.3390/rs70505565 CrossRefGoogle Scholar
  16. El-Sheimy N (2009) Georeferencing component of LiDAR systems. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca RatonGoogle Scholar
  17. Fernandez-Diaz JC, Carter WE, Shrestha RL, Glennie CL (2014) Now you see it… now you don’t: understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. Remote Sens 6:9951–10001. https://doi.org/10.3390/rs6109951 CrossRefGoogle Scholar
  18. Forbriger M, Müller L, Siart C, Schittek K, Höfle B, Bubenzer O, Reindel M, Eitel B (2011) Terrestrial laser scanning in geoarchaeology – capturing one of the oldest settlement places in the high Andes of southern Peru. Geophys Res Abstr 13(EGU2011-12236)Google Scholar
  19. Forbriger M, Mara H, Rieck B, Siart C, Wagener O (2013) Der “Gesprengte Turm” am Heidelberger Schloss Untersuchung eines Kulturdenkmals mithilfe hoch auflösender terrestrischer Laserscans. Denkmalpflege in Baden-Württemberg - Nachrichtenblatt Landesdenkmalpflege 3(2013):165–168Google Scholar
  20. Ghilardi M, Desruelles S (2009) Geoarchaeology: where human, social and earth sciences meet with technology. SAPIENS 2(2)Google Scholar
  21. Heritage G, Hetherington D (2007) Towards a protocol for laser scanning in fluvial geomorphology. Earth Surf Process Landf 32:66–74. https://doi.org/10.1002/esp.1375 CrossRefGoogle Scholar
  22. Heritage G, Large A (2009) Principles of 3D laser lcanning. In: Heritage G, Large A (eds) Laser scanning for the environmental sciences. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  23. Hesse R (2013) The changing picture of archaeological landscapes: lidar prospection over very large areas as part of a cultural heritage strategy. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, OxfordGoogle Scholar
  24. Hesse R (2014) Geomorphological traces of conflict in high-resolution elevation models. App Geogr 46:11–20. https://doi.org/10.1016/j.apgeog.2013.10.004 CrossRefGoogle Scholar
  25. Hesse R (2015) Combining structure-from-motion with high and intermediate resolution satellite images to document threats to archaeological heritage in arid environments. J Cult Herit 16(2):192–201. https://doi.org/10.1016/j.culher.2014.04.003 CrossRefGoogle Scholar
  26. Hoffmeister D, Bolten A, Curdt C, Waldhoff G, Bareth G (2010) High resolution crop surface models (CSM) and crop volume models (CVM) on field level by terrestrial laserscanning. Proc SPIE 7840:78400E. https://doi.org/10.1117/12.872315 CrossRefGoogle Scholar
  27. Höfle B (2014) Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geosci Remote Sens Lett 11(1):94–98. https://doi.org/10.1109/LGRS.2013.2247022 CrossRefGoogle Scholar
  28. Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62(6):415–433. https://doi.org/10.1016/j.isprsjprs.2007.05.008 CrossRefGoogle Scholar
  29. Höfle B, Wagener O (2012) Burgen in der Landschaft - Inszenierung und Entzifferung anhand neuer Methoden. In: Wagener O (ed) Symbole der Macht? Aspekte mittelalterlicher und frühneuzeitlicher Architektur. Peter Lang, Frankfurt am MainGoogle Scholar
  30. Höfle B, Mücke W, Dutter M, Rutzinger M, Dorninger P (2009) Detection of building regions using airborne LiDAR – a new combination of raster and point cloud based GIS methods. In: Proceedings of 21st AGIT symposium Angewandte Geoinformatik, Salzburg, Austria, 8–10 July 2009Google Scholar
  31. Johnson KM, Ouimet WB (2014) Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J Archaeol Sci 43:9–20. https://doi.org/10.1016/j.jas.2013.12.004 CrossRefGoogle Scholar
  32. Koenig K, Höfle B, Müller L, Hämmerle M, Jarmer T, Siegmann B, Lilienthal H (2013) Radiometric correction of terrestrial LiDAR data for mapping of harvest residues density. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci II-5(W2):133–138. https://doi.org/10.5194/isprsannals-II-5-W2-133-2013 CrossRefGoogle Scholar
  33. Krömker S (2013) Neue Methoden zur besseren Lesbarkeit mittelalterlicher Grabsteine am Beispiel des Heiligen Sands in Worms. In: Heberer P (ed) Die SchUM-Gemeinden Speyer - Worms - Mainz. Auf dem Weg zum Welterbe. Schnell & Steiner, RegensburgGoogle Scholar
  34. Liang X, Hyyppä J, Kukko A, Kaartinen H, Jaakkola A, Yu X (2014a) The use of a mobile laser scanning system for mapping large forest plots. IEEE Geosci Remote Sens Lett 11(9):1504–1508. https://doi.org/10.1109/LGRS.2013.2297418 CrossRefGoogle Scholar
  35. Liang X, Kukko A, Kaartinen H, Hyyppä J, Yu X, Jaakkola A, Wang Y (2014b) Possibilities of a personal laser scanning system for forest mapping and ecosystem services. Sensors 14(1):1228–1248. https://doi.org/10.3390/s140101228 CrossRefGoogle Scholar
  36. Lichti D, Skaloud J (2010) Registration and calibration. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning. CRC Press, Boca RatonGoogle Scholar
  37. Mara H, Krömker S, Jakob S, Breuckmann B (2010) GigaMesh and Gilgamesh – 3D multiscale integral invariant cuneiform character extraction. In: Artusi A, Joly M, Lucet G, Pitzalis D, Ribes A (eds) Proceedings of the 11th international VAST symposium on virtual reality, archaeology and cultural heritage, Paris, FranceGoogle Scholar
  38. Meister S, Kohli P, Izadi S, Hämmerle M, Rother C, Kondermann D (2012) When can we use KinectFusion for ground truth acquisition? In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Vilamoura, Portugal, 7–12 Oct 2012Google Scholar
  39. Petrie G, Toth CK (2009a) Introduction to laser ranging, profiling, and scanning. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca RatonGoogle Scholar
  40. Petrie G, Toth CK (2009b) Airborne and spaceborne laser profilers and scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca RatonGoogle Scholar
  41. Petrie G, Toth CK (2009c) Terrestrial laser scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca RatonGoogle Scholar
  42. Pfeifer N, Mandlburger G (2009) LiDAR data filtering and DTM generation. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca RatonGoogle Scholar
  43. Pfenningbauer M, Riegl U, Rieger P, Amon P (2014) UAS based laser scanning for forest inventory and precision farming. In: Proceedings of the international workshop on remote sensing and GIS for monitoring of habitat quality, Vienna, Austria, 24–25 Sept 2014Google Scholar
  44. Rapp G Jr, Hill CL (2009) Geoarchaeology. Yale University Press, New HavenGoogle Scholar
  45. Remondino F (2013) Worth a thousand words – photogrammetry for archaeological 3D surveying. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, OxfordGoogle Scholar
  46. Renfrew C (1976) Archaeology and the earth sciences. In: Davidson DA, Shackley ML (eds) Geoarchaeology. Earth Science and the Past. Duckworth, LondonGoogle Scholar
  47. Risbøl O (2013) Cultivating the ‘wilderness’ – how lidar can improve archaeological landscape understanding. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, OxfordGoogle Scholar
  48. Sarbolandi H, Lefloch D, Kolb A (2015) Kinect range sensing: structured-light versus time-of-flight Kinect. Comput Vision Image Underst. https://doi.org/10.1016/j.cviu.2015.05.006
  49. Schneider A, Takla M, Nicolay A, Raab A, Raab T (2014) A template-matching approach combining morphometric variables for automated mapping of charcoal kiln sites. Archaeol Prospect 22(1):45–62. https://doi.org/10.1002/arp.1497 CrossRefGoogle Scholar
  50. Siart C (2018) Merging the views: highlights on the fusion of surface and subsurface geodata and their potentials for digital geoarchaeology. In: Siart C, Forbriger M, Bubenzer O (eds) Digital geoarchaeology – new techniques for interdisciplinary human-environmental research. Springer, Heidelberg, pp 253–266Google Scholar
  51. Siart C, Ghilardi M, Holzhauer I (2009) Geoarchaeological study of karst depressions integrating geophysical and sedimentological methods: case studies from Zominthos and Lato (Central and East Crete, Greece). Géomorphol Relief Process Environ 4:17–32. https://doi.org/10.4000/geomorphologie.7709 Google Scholar
  52. Siart C, Forbriger M, Nowaczinski E, Hecht S, Höfle B (2013) Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification. Earth Surf Process Landf 38(10):1135–1147. https://doi.org/10.1002/esp.3394 CrossRefGoogle Scholar
  53. Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59(1–2):85–101. https://doi.org/10.1016/j.isprsjprs.2004.05.004 CrossRefGoogle Scholar
  54. Stilla U, Jutzi B (2009) Waveform analysis for small-footprint pulsed laser systems. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca RatonGoogle Scholar
  55. Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4:1519–1543. https://doi.org/10.3390/rs4061519 CrossRefGoogle Scholar
  56. Zielhofer C, Clare L, Rollefson G, Wächter S, Hoffmeister D, Bareth G, Roettig C, Bullmann H, Schneider B, Berke H, Weninger B (2012) The decline of the early Neolithic population center of ‘Ain Ghazal and corresponding earth-surface processes, Jordan Rift Valley. Quat Res 78(3):427–441. https://doi.org/10.1016/j.yqres.2012.08.006 CrossRefGoogle Scholar
  57. Zlot R, Bosse M, Greenop K, Jarzab Z, Juckes E, Roberts J (2014) Efficiently capturing large, complex cultural heritage sites with a handheld mobile 3D laser mapping system. J Cult Herit 15(6):670–678. https://doi.org/10.1016/j.culher.2013.11.009 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.GIScience & 3D Spatial Data Processing Research Group, Institute of GeographyHeidelberg UniversityHeidelbergGermany
  2. 2.Heidelberg Center for the EnvironmentHeidelbergGermany

Personalised recommendations