The Ontic Account of Explanatory Reduction

  • Marie I. Kaiser
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL)


In Chapter 6, I develop an ontic account of explanatory reduction in biology by analyzing paradigmatic and important examples of reductive (and non-reductive) explanations and discussions about reductionism from biological practice. I start with briefly specifying two concepts that occupy center stage in my account: the concept of a biological part (or of a part-whole relation) and the concept of levels of organization. On the basis of these conceptual clarifications I then answer the central question of my book, namely what are the characteristics that determine whether a biological explanation is reductive or not. The main result of my analysis of biological practice will be that reductive explanations in biology possess three features (two of which are necessary conditions, one of which is only a typical feature that most reductive explanations exhibit): they display a lower-level character, focus on factors that are internal to the biological object of interest, and describe the biological parts of this object only as parts in isolation.


Biological part Level of organization Internal Part in isolation Ontic account 


  1. Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006a). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3(6), 709–713.CrossRefGoogle Scholar
  2. Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006b). The clinical applications of a systems approach. PLoS Medicine, 3(7), 1–5.CrossRefGoogle Scholar
  3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular biology of the cell (5th ed.). New York: Garland Science.Google Scholar
  4. Bateson, P. (2005). The return of the whole organism. Journal of Bioscience, 30(1), 31–39.CrossRefGoogle Scholar
  5. Bechtel, W. (2001). The compatibility of complex systems and reduction: A case analysis of memory research. Minds and Machines, 11, 483–502.CrossRefGoogle Scholar
  6. Bechtel, W. (2006). Discovering cell mechanisms. The creation of modern cell biology. Cambridge: Cambridge University Press.Google Scholar
  7. Bechtel, W. (2008). Mental mechanisms. Philosophical perspectives on cognitive neuroscience. New York: Taylor and Francis Group.Google Scholar
  8. Bechtel, W. (2009). Looking down, around, and up: Mechanistic explanation in psychology. Philosophical Psychology, 22(5), 543–564.CrossRefGoogle Scholar
  9. Bechtel, W., & Abrahamsen, A. (2011). Complex biological mechanisms: Cyclic, oscillatory, and autonomous. In C. A. Hooker (Ed.), Philosophy of complex systems. Handbook of the philosophy of science (pp. 257–285). New York: Elsevier.CrossRefGoogle Scholar
  10. Bechtel, W., & Hamilton, A. (2007). Reduction, integration, and the unity of science: Natural, behavioral, and social sciences and the humanities. In T. A. F. Kuipers (Ed.), General philosophy of science: Focal issues (pp. 377–430). Amsterdam: Elsevier.CrossRefGoogle Scholar
  11. Bechtel, W., & Richardson, R. C. (2010). Discovering complexity. Decomposition and localization as strategies in scientific research. Cambridge: MIT Press.Google Scholar
  12. Bizzarri, M., Cucina, A., Conti, F., & D’Anselmi, F. (2008). Beyond the oncogene paradigm: Understanding complexity in carcinogenesis. Acta Biotheoretica, 56, 173–196.CrossRefGoogle Scholar
  13. Boyle, R. (1966). The excellency of theology (works IV). In The works of the honourable Robert Boyle. In Six volumes. To which is prefixed the life of the author. A new edition, London: Printed for J. and F. Rivington et al.Google Scholar
  14. Brandon, R. N. (1990). Adaptation and environment. Princeton: Princeton University Press.Google Scholar
  15. Brandon, R. N. (1996). Concepts and methods in evolutionary biology. Cambridge: Cambridge University Press.Google Scholar
  16. Brigandt, I., & Love, A. (2008). Reductionism in biology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. (Fall 2008 Edition).
  17. Broad, C. D. (1925). The mind and its place in nature. London: Paul/Routledge.Google Scholar
  18. Byerly, H. (2003). Reductionism: Analysis and synthesis in biological explanations. The Quarterly Review of Biology, 78(3), 336–342.CrossRefGoogle Scholar
  19. Chong, L., & Ray, L. B. (2002). Whole-istic biology. Science, 295, 1661.CrossRefGoogle Scholar
  20. Craver, C. F. (2005). Beyond reduction: Mechanisms, multifield integration, and the unity of neuroscience. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 373–395.CrossRefGoogle Scholar
  21. Craver, C. F. (2007a). Explaining the brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.Google Scholar
  22. Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22, 547–563.CrossRefGoogle Scholar
  23. Darden, L., & Tabery, J. (2010). Molecular biology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2010 Edition).
  24. De Vreese, L., Weber, E., & Van Bouwel, J. (2010). Explanatory pluralism in the medical science: Theory and practice. Theoretical Medicine and Bioethics, 31, 371–390.CrossRefGoogle Scholar
  25. Delehanty, M. (2005). Emergent properties and the context objection to reduction. Biology and Philosophy, 20, 715–734.CrossRefGoogle Scholar
  26. Dennett, D. C. (1995). Darwin’s dangerous idea. New York: Simon and Schuster.Google Scholar
  27. Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426, 884–890.CrossRefGoogle Scholar
  28. Dupré, J. (1993). The disorder of things. Metaphysical foundations of the disunity of science. Cambridge: Harvard University Press.Google Scholar
  29. Dupré, J. (2009). It is not possible to reduce biological explanations to explanations in chemistry and/ or physics. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 32–47). Chichester: Blackwell.CrossRefGoogle Scholar
  30. Dupré, J. (2012). Processes of life. Essays in the philosophy of biology. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Eronen, M. I. (2015). Levels of organization: A deflationary account. Biology and Philosophy, 30(1), 39–58.CrossRefGoogle Scholar
  32. Fang, F. C., & Casadevall, A. (2011). Reductionistic and holistic science. Infection and Immunity, 79, 1401–1404.CrossRefGoogle Scholar
  33. Fazekas, P., & Kertész, G. (2011). Causation at different levels: Tracking the commitments of mechanistic explanations. Biology and Philosophy, 26, 365–383.CrossRefGoogle Scholar
  34. Fincham, J. R. S. (2000). Reductionism should be clarified, not dismissed. Nature, 406, 343.CrossRefGoogle Scholar
  35. Fodor, J. A. (1974). Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28, 97–115.CrossRefGoogle Scholar
  36. Frost-Arnold, G. (2004). How to be an anti-reductionist about developmental biology: Response to Laubichler and Wagner. Biology and Philosophy, 19, 75–91.CrossRefGoogle Scholar
  37. Frydman, J. (2001). Folding of newly translated proteins in vitro: The role of molecular chaperones. Annual Review of Biochemistry, 70, 603–647.CrossRefGoogle Scholar
  38. Gallagher, R., & Appenzeller, T. (1999). Beyond reductionism. Science, 284, 79.CrossRefGoogle Scholar
  39. Gilbert, S. F. (2006). Developmental biology (8th ed.). Sunderland: Sinauer Associates.Google Scholar
  40. Gillett, C. (2013). Constitution, and multiple constitution, in the sciences: Using the neuron to construct a starting framework. Minds and Machines, 23(3), 309–337.CrossRefGoogle Scholar
  41. Glennan, S. S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, 342–353.CrossRefGoogle Scholar
  42. Glennan, S. S. (2008). Mechanism. In S. Psillos & M. Curd (Eds.), The Routledge companion to philosophy of science (pp. 376–384). London: Routledge.Google Scholar
  43. Greenspan, R. J. (2001). The flexible genome. Nature Reviews, 2, 383–387.CrossRefGoogle Scholar
  44. Grizzi, F., & Chiriva-Internati, M. (2005). The complexity of anatomical systems. Theoretical Biology and Medical Modelling, 2, 26–34.CrossRefGoogle Scholar
  45. Grizzi, F., & Chiriva-Internati, M. (2006). Cancer: Looking for simplicity and finding complexity. Cancer Cell International, 6, 4–10.CrossRefGoogle Scholar
  46. Grizzi, F., Di Ieva, A., Russo, C., Frezza, E. E., Cobos, E., Muzzio, P. C., & Chiriva-Internati, M. (2006). Cancer initiation and progression: An unsimplifiable complexity. Theoretical Biology and Medical Modelling, 3, 37–42.CrossRefGoogle Scholar
  47. Grush, R. (2003). In defense of some ‘Cartesian’ assumption concerning the brain and its operation. Biology and Philosophy, 18, 53–93.CrossRefGoogle Scholar
  48. Guttman, B. S. (1976). Is ‘Levels of Organization’ a useful biological concept? BioScience, 26(2), 112–113.CrossRefGoogle Scholar
  49. Hahn, W. C., & Weinberg, R. A. (2002). Modelling the molecular circuitry of cancer. Nature Reviews, 2, 331–341.Google Scholar
  50. Hartl, F. U. (2011). Chaperone-assisted protein folding: The path to discovery from a personal perspective”. Nature Medicine, 17, 1206–1210.CrossRefGoogle Scholar
  51. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.CrossRefGoogle Scholar
  52. Haugeland, J. (1998). Having thought. Essays in the metaphysics of mind. Cambridge: Harvard University Press.Google Scholar
  53. Huneman, P. (2014a). Individuality as a theoretical scheme. I. Formal and material concepts of individuality. Biological Theory, 9(4), 361–373.CrossRefGoogle Scholar
  54. Huneman, P. (2014b). Individuality as a theoretical scheme. II. About the weak individuality of organisms and ecosystems. Biological Theory, 9(4), 374–381.CrossRefGoogle Scholar
  55. Hunter, P. (2003). Putting Humpty Dumpty back together again. Scientist, 17(4), 20–22.Google Scholar
  56. Hüttemann, A., & Love, A. C. (2011). Aspects of reductive explanation in biological science: Intrinsicality, fundamentality, and temporality. British Journal for Philosophy of Science, 62(3), 519–549.CrossRefGoogle Scholar
  57. Huxley, H. E., & Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 1973, 973–976.CrossRefGoogle Scholar
  58. Huxley, A. F., & Niedergerke, R. (1954). Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature, 1973, 971–973.CrossRefGoogle Scholar
  59. Jansen, L., & Schulz, S. (2014). Crisp islands in vague seas: Cases of determinate parthood relations in biological objects. In C. Calosi & P. Graziani (Eds.), Mereology in the sciences. Parts and wholes in contemporary scientific contexts (pp. 163–188). Cham: Springer.Google Scholar
  60. Joyner, M. J., & Pedersen, B. K. (2011). Ten questions about systems biology. The Journal of Physiology, 589(5), 1017–1030.CrossRefGoogle Scholar
  61. Kaiser, M. I. (2011). Limits of reductionism in the life sciences. History and Philosophy of the Life Sciences, 33, 453–476.Google Scholar
  62. Kaiser, M. I. (2015). Philosophy of microbiology – Maureen A. O’Malley. International Studies in the Philosophy of Science.Google Scholar
  63. Kaiser, M. I. (forthcoming a). Individuating part-whole relations in the biological world. In O. Bueno, R.-L. Chen, & M. B. Fagan (Eds.), Individuation across experimental and theoretical sciences, Oxford University Press.Google Scholar
  64. Kaiser, M. I. (forthcoming b). Biological parts. In: H. Burkhardt, J. Seibt, G. Imaguire (Eds.), Handbook of mereology, Philosophia.Google Scholar
  65. Kaiser, M. I. (manuscript a). Levels as determined by parts, wholes, and kinds Google Scholar
  66. Kaiser, M. I. (manuscript b) ENCODE and the question of Parthood.Google Scholar
  67. Kaiser, M. I., & Krickel, B. (forthcoming). The metaphysics of constitutive mechanistic phenomena. British Journal for the Philosophy of Science.Google Scholar
  68. Keller, F. E. (2005). The century beyond the gene. Journal of Bioscience, 30(1), 3–10.CrossRefGoogle Scholar
  69. Kennedy, S. G., Wagner, A. J., Conzen, S. D., Jordan, J., Bellacosa, A., Tsichlis, P. N., & Hay, N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes & Development, 11, 701–713.CrossRefGoogle Scholar
  70. Kitano, H. (2002). Systems biology: A brief overview. Science, 295, 1662–1664.CrossRefGoogle Scholar
  71. Kitcher, P. (1984). 1953 an all that: A tale of two sciences. Philosophical Review, 93, 335–373.CrossRefGoogle Scholar
  72. Kitcher, P. (1993). Function and design. Midwest Studies in Philosophy, 18(1), 379–397.CrossRefGoogle Scholar
  73. Korfiatis, K. J., & Stamou, G. P. (1999). Habitat templets and the changing worldview of ecology. Biology and Philosophy, 14, 375–393.CrossRefGoogle Scholar
  74. Ladyman, J., Ross, D., Spurrett, D., & Collier, J. (2007). Everything must go. Metaphysics naturalized. Oxford: Oxford University Press.CrossRefGoogle Scholar
  75. Laubichler, M. D., & Wagner, G. P. (2001). How molecular is molecular developmental biology? A reply to Alex Rosenberg’s ‘Reductionism Redux: Computing the Embryo’. Biology and Philosophy, 16, 53–68.CrossRefGoogle Scholar
  76. Levenstein, S. (2009). Against reductionism. BMJ, 339, 709.CrossRefGoogle Scholar
  77. Levins, R. (1970). Complex systems. In C. H. Waddington (Ed.), Towards a theoretical biology (pp. 73–88). Edinburgh: University Press.Google Scholar
  78. Levins, R., & Lewontin, R. C. (1980). Dialectics and reductionism in ecology. Synthese, 43, 47–78.CrossRefGoogle Scholar
  79. Lidicker, W. Z. (1988). The synergistic effects of reductionist and holistic approaches in animal ecology. OIKOS, 53, 278–281.CrossRefGoogle Scholar
  80. Loehle, C. (1988). Philosophical tools: Potential contributions to ecology. OIKOS, 51(1), 97–119.CrossRefGoogle Scholar
  81. Love, A. C. (2012b). Hierarchy, causation and explanation: Ubiquity, locality and pluralism. Interface Focus, 2, 115–125.CrossRefGoogle Scholar
  82. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  83. Mackie, J. L. (1974). The cement of the universe. A study of causation. Oxford: Clarendon Press.Google Scholar
  84. Malaterre, C. (2007). Organicism and reductionism in cancer research: Towards a systemic approach. International Studies in the Philosophy of Science, 21(1), 57–73.CrossRefGoogle Scholar
  85. Marcum, J. A. (2005). Metaphysical presuppositions and scientific practices: Reductionism and organicism in cancer research. International Studies in the Philosophy of Science, 19(1), 31–45.CrossRefGoogle Scholar
  86. Mayr, E. (1988). The limits of reductionism. Nature, 331, 475–476.CrossRefGoogle Scholar
  87. McShea, D. W. (2000). Functional complexity in organisms: Parts as proxies. Biology and Philosophy, 15, 641–668.CrossRefGoogle Scholar
  88. McShea, D. W., & Venit, E. (2001). What is a part? In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 259–284). San Diego: Academic.CrossRefGoogle Scholar
  89. Mellor, D. H. (2008). Micro-composition. Royal Institute of Philosophy Supplements, 83(62), 65–80.CrossRefGoogle Scholar
  90. Mikkelson, G. M. (2004). Biological diversity, ecological stability, and downward causation. In M. Oksanen & J. Pietarinen (Eds.), Philosophy and biodiversity (pp. 119–129). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  91. Mikkelson, G. M. (forthcoming). Part-whole relationships and the unity of ecology. In R. A. Skipper Jr., C. Allen, R. Ankeny, C. F. Craver, L. Darden, G. M. Mikkelson, & R. C. Richardson (Eds.), Philosophy across the life sciences. MIT Press.Google Scholar
  92. Mitchell, S. D. (2009). Unsimple truths. Science, complexity, and policy. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  93. Nagel, E. (1952). Wholes, sums, and organic unities. Philosophical Studies, 3(2), 17–32.CrossRefGoogle Scholar
  94. O’Malley, M. A. (2014). Philosophy of microbiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  95. O’Malley, M. A., & Dupré, J. (2005). Fundamental issues in systems biology. BioEssays, 27, 1270–1276.CrossRefGoogle Scholar
  96. O’Malley, M. A., & Dupré, J. (2007). Size doesn’t matter: Towards a more inclusive philosophy of biology. Biology and Philosophy, 22, 155–191.CrossRefGoogle Scholar
  97. Oppenheim, P., & Putnam, H. (1958). Unity of science as a working hypothesis. In H. Feigl, M. Scriven, & G. Maxwell (Eds.), Concepts, theories and the mind-body problem (Minnesota studies in the philosophy of science, Vol. II, pp. 3–36). Minneapolis: University of Minnesota Press.Google Scholar
  98. Potochnik, A., & McGill, B. (2012). The limitations of hierarchical organization. Philosophy of Science, 79(1), 120–140.CrossRefGoogle Scholar
  99. Powell, K. (2004). All systems go. The Journal of Cell Biology, 165, 299–303.CrossRefGoogle Scholar
  100. Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2011). Campbell biology (9th ed.). Boston: Pearson.Google Scholar
  101. Richfield, D. (2014). Medical gallery of David Richfield. Wikiversity Journal of Medicine, 1(2). doi:10.15347/wjm/2014.009. ISSN 2001–8762.Google Scholar
  102. Rosenberg, A. (1997). Reductionism redux: Computing the embryo. Biology and Philosophy, 12, 445–470.CrossRefGoogle Scholar
  103. Rosenberg, A. (2006). Darwinian reductionism. Or, how to stop worrying and love molecular biology. Cambridge: University of Chicago Press.CrossRefGoogle Scholar
  104. Roukos, D. H. (2011). Networks medicine: From reductionism to evidence of complex dynamic biomolecular interactions. Pharmacogenomics, 12(5), 695–698.CrossRefGoogle Scholar
  105. Salmon, W. C. (1984a). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.Google Scholar
  106. Sarkar, S. (1998). Genetics and reductionism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  107. Sarkar, S. (2005). Molecular models of life. Philosophical papers on molecular biology. Cambridge: MIT Press.Google Scholar
  108. Sarkar, S. (2008). Reduction. In S. Psillos & M. Curd (Eds.), The Routledge companion to philosophy of science (pp. 425–434). London: Routledge.Google Scholar
  109. Sarkar, S. (2009). Ecology. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy (Spring 2009 Edition).
  110. Schaffner, K. F. (1969). The Watson-Crick model and reductionism. British Journal for the Philosophy of Science, 20, 325–348.CrossRefGoogle Scholar
  111. Schaffner, K. F. (1993). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.Google Scholar
  112. Schaffner, K. F. (2006). Reduction: The Cheshire cat problem and a return to the roots. Synthese, 151, 377–402.CrossRefGoogle Scholar
  113. Schoener, T. W. (1986). Mechanistic approaches to community ecology: A new reductionism? American Zoologist, 26, 81–106.CrossRefGoogle Scholar
  114. Service, R. F. (1999). Exploring the systems life. Science, 284, 80–83.CrossRefGoogle Scholar
  115. Shimamura, H., Terada, Y., Okado, T., Tanaka, H., Inoshita, S., & Sasaki, S. (2003). The PI3-kinase-Akt pathway promotes mesangial cell survival and inhibits apoptosis in vitro via NF-kappa B and bad. Journal of American Society of Nephrology, 14(6), 1427–1434.CrossRefGoogle Scholar
  116. Sider, T. (2001). Four dimensionalism: An ontology of persistence and time. Oxford: Oxford University Press.CrossRefGoogle Scholar
  117. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.Google Scholar
  118. Simon, H. A. (1973). The organization of complex systems. In H. H. Pattee (Ed.), Hierarchy theory: The challenge of complex systems. New York: Braziller.Google Scholar
  119. Simons, P. (1987). Parts. A study in ontology. Oxford: Clarendon.Google Scholar
  120. Skipper, R. A., & Millstein, R. L. (2005). Thinking about evolutionary mechanisms: Natural selection. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 327–347.CrossRefGoogle Scholar
  121. Smith, B., & Varzi, A. C. (2000). Fiat and bona-fide boundaries. Philosophy and Phenomenological Research, 60(2), 401–420.CrossRefGoogle Scholar
  122. Sonnenschein, C., & Soto, A. M. (2000). Somatic mutation theory of carcinogenesis: Why it should be dropped and replaced. Molecular Carcinogenesis, 29, 205–211.CrossRefGoogle Scholar
  123. Sorger, P. K. (2005). A reductionist’s systems biology. Current Opinion in Cell Biology, 17, 9–11.CrossRefGoogle Scholar
  124. Soto, A. M., & Sonnenschein, C. (2005). Emergentism as a default: Cancer as a problem of tissue organization. Journal of Bioscience, 30(1), 103–118.CrossRefGoogle Scholar
  125. Soto, A. M., & Sonnenschein, C. (2010). Environmental causes of cancer: Endocrine disruptors as carcinogenes. Nature Reviews, 6, 363–370.Google Scholar
  126. Soto, A. M., Rubin, B. S., & Sonnenschein, C. (2006). Emergentism by default: A view from the bench. Synthese, 151, 361–376.CrossRefGoogle Scholar
  127. Soto, A. M., Rubin, B. S., & Sonnenschein, C. (2009). Interpreting endocrine disruption from an integrative biology perspective. Molecular and Cellular Endocrinology, 304, 3–7.CrossRefGoogle Scholar
  128. Spencer, M. (1997). The effects of habitat size and energy on food web structure: An individual-based cellular automata model. Ecological Modelling, 94, 299–316.CrossRefGoogle Scholar
  129. Steel, D. P. (2004). Can a reductionist be a pluralist? Biology and Philosophy, 19, 55–73.CrossRefGoogle Scholar
  130. Strange, K. (2005). The end of ‘Naive Reductionism’: Rise of systems biology or renaissance of physiology? American Journal of Physiology - Cell Physiology, 288, 968–974.CrossRefGoogle Scholar
  131. Tabery, J. G. (2004). Synthesizing activities and interactions in the concept of mechanism. Philosophy of Science, 71, 1–15.CrossRefGoogle Scholar
  132. van Inwagen, P. (1990). Material beings. New York: Cornell University Press.Google Scholar
  133. van Regenmortel, M. H. V. (1998). From absolute to exquisite specificity. Reflection on the fuzzy nature of species, specificity and antigenic sites. Journal of Immunological Methods, 216, 37–48.CrossRefGoogle Scholar
  134. van Regenmortel, M. H. V. (2004a). Reductionism and complexity in molecular biology. EMBO Reports, 5, 1016–1020.CrossRefGoogle Scholar
  135. van Regenmortel, M. H. V. (2004b). Biological complexity emerges from the ashes of genetic reductionism. Journal of Molecular Recognition, 17(3), 145–148.CrossRefGoogle Scholar
  136. van Regenmortel, M. H. V., & Hull, D. L. (Eds.). (2002). Reductionism in the biomedical sciences. London: Wiley.Google Scholar
  137. Venter, J. C., et al. (2001). The sequence of the human genome. Science, 291, 1304–1348.CrossRefGoogle Scholar
  138. Waters, C. K. (1994). Genes made molecular. Philosophy of Science, 61(2), 163–185.CrossRefGoogle Scholar
  139. Waters, C. K. (2008). Beyond theoretical reduction and layer-cake antireduction: How DNA retooled genetics and transformed biological practice. In M. Ruse (Ed.), The Oxford handbook of the philosophy of biology (pp. 238–262). Oxford: Oxford University Press.Google Scholar
  140. Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.CrossRefGoogle Scholar
  141. Weber, M. (1998). Die Architektur der Synthese. Entstehung und Philosophie der modernen Evolutionstheorie. Berlin: de Gruyter.CrossRefGoogle Scholar
  142. Weinberg, R. A. (1998). One renegade cell. New York: Basic Books.Google Scholar
  143. Wilson, D. S. (1988). Holism and reductionism in evolutionary ecology. OIKOS, 53(2), 269–273.CrossRefGoogle Scholar
  144. Wimsatt, W. C. (1974). Complexity and organization. PSA, 1972, 67–86.Google Scholar
  145. Wimsatt, W. C. (1976a). Reductive explanation: A functional account. PSA, 1974, 671–710.Google Scholar
  146. Wimsatt, W. C. (1976b). Reductionism, levels of organization, and the mind-body problem. In G. G. Globus (Ed.), Consciousness and the brain (pp. 205–267). New York: Plenum Press.CrossRefGoogle Scholar
  147. Wimsatt, W. C. (1980). Reductionistic research strategies and their biases in the units of selection controversy. In T. Nickles (Ed.), Scientific discovery: Case studies (pp. 213–259). Dordrecht: Reidel.CrossRefGoogle Scholar
  148. Wimsatt, W. C. (1986). Forms of aggregativity. In: A. Donagan, A. N. Perovich Jr., & M. V. Wedin (Eds.), Human nature and natural knowledge. Essays Presented to Marjorie Grene on the Occasion of Her Seventy-Fifth Birthday (pp. 259–291). Boston: Reidel.Google Scholar
  149. Wimsatt, W. C. (1997). Aggregativity: Reductive heuristics for finding emergence. Philosophy of Science, 64, 372–384.CrossRefGoogle Scholar
  150. Wimsatt, W. C. (2006a). Reductionism and its heuristics: Making methodological reductionism honest. Synthese, 151(3), 445–475.CrossRefGoogle Scholar
  151. Wimsatt, W. C. (2006b). Aggregate, composed, and evolved systems: Reductionistic heuristics as means to more holistic theories. Biology and Philosophy, 21(5), 667–702.CrossRefGoogle Scholar
  152. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings. Piecewise approximations to reality. Cambridge: Harvard University Press.Google Scholar
  153. Wimsatt, W. C., & Sarkar, S. (2006). Reductionism. In S. Sarkar & J. Pfeifer (Eds.), The philosophy of science: An encyclopedia (pp. 696–702). New York: Routledge.Google Scholar
  154. Winther, R. G. (2006). Parts and theories in compositional biology. Biology and Philosophy, 21, 471–199.CrossRefGoogle Scholar
  155. Winther, R. G. (2011). Part-whole science. Synthese, 178, 397–427.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marie I. Kaiser
    • 1
  1. 1.Universität zu KölnKölnGermany

Personalised recommendations