Meta-philosophical Preliminaries

  • Marie I. Kaiser
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL)

Abstract

Chapter 2 serves to disclose the meta-philosophical assumptions that underlie my analysis of explanatory reduction. This includes explicating (and justifying) the aim of my analysis, the philosophical methodology by which I develop my account, and the criteria of adequacy that I accept. I will characterize my own account as being descriptive and bottom-up but critical, as being as universal as possible and as specific as necessary, as being normative in a certain way but not in another, and as being potentially useful for science.

Keywords

Philosophical methodology Descriptive adequacy Normativity Biological practice 

References

  1. Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006a). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3(6), 709–713.CrossRefGoogle Scholar
  2. Anderson, G. (2005). Kritische oder beschreibende Wissenschaftstheorie? In B. Gesang (Ed.), Deskriptive oder normative Wissenschaftstheorie? (pp. 75–90). Frankfurt: Ontos.Google Scholar
  3. Ankeny, R., Chang, H., Boumans, M., & Boon, M. (2011). Introduction: Philosophy of science in practice. European Journal for Philosophy of Science, 1, 303–307.CrossRefGoogle Scholar
  4. Bechtel, W. (2008). Mental mechanisms. Philosophical perspectives on cognitive neuroscience. New York: Taylor and Francis Group.Google Scholar
  5. Bechtel, W., & Richardson, R. C. (2010). Discovering complexity. Decomposition and localization as strategies in scientific research. Cambridge: MIT Press.Google Scholar
  6. Bickle, J. (2003). Philosophy and neuroscience. A ruthlessly reductive account. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  7. Bizzarri, M., Cucina, A., Conti, F., & D’Anselmi, F. (2008). Beyond the oncogene paradigm: Understanding complexity in carcinogenesis. Acta Biotheoretica, 56, 173–196.CrossRefGoogle Scholar
  8. Brandon, R. N. (1990). Adaptation and environment. Princeton: Princeton University Press.Google Scholar
  9. Brandon, R. N. (1996). Concepts and methods in evolutionary biology. Cambridge: Cambridge University Press.Google Scholar
  10. Buchanan, A. V., Weiss, K. M., & Fullerton, S. M. (2006). Dissecting complex disease: The quest for the philosopher’s stone? International Journal of Epidemiology, 35, 562–571.CrossRefGoogle Scholar
  11. Callebaut, W. (1993). Taking the naturalism, or, how real philosophy of science is done. Chicago: University of Chicago Press.Google Scholar
  12. Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press.Google Scholar
  13. Carrier, M. (2007). Wege der Wissenschaftsphilosophie im 20. Jahrhundert. In A. Bartels & M. Stöckler (Eds.), Wissenschaftstheorie. Ein Studienbuch (pp. 15–44). Paderborn: Mentis.Google Scholar
  14. Cartwright, N. (1999). The dappled world: A study of the boundaries of science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Chalmers, D. J., & Jackson, F. (2001). Conceptual analysis and reductive explanation. Philosophical Review, 110(3), 315–360.CrossRefGoogle Scholar
  16. Chang, H. (2011). The philosophical grammar of scientific practice. International Studies in the Philosophy of Science, 25(3), 205–221.CrossRefGoogle Scholar
  17. Craver, C. F. (2007a). Explaining the brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.Google Scholar
  18. Crick, F. H. C. (1988). What mad pursuit. A personal view of scientific discovery. New York: Francis Books.Google Scholar
  19. Dupré, J. (1993). The disorder of things. Metaphysical foundations of the disunity of science. Cambridge: Harvard University Press.Google Scholar
  20. Einstein, A. (1933). On the method of theoretical physics. The Herbert Spencer lecture, delivered at Oxford, 10 June 1933, Oxford: Clarendon Press.Google Scholar
  21. Falkenburg, B. (2005). Der Wert wertfreier Wissenschaft. In B. Gesang (Ed.), Deskriptive oder normative Wissenschaftstheorie? (pp. 91–122). Frankfurt: Ontos.Google Scholar
  22. Fincham, J. R. S. (2000). Reductionism should be clarified, not dismissed. Nature, 406, 343.CrossRefGoogle Scholar
  23. Gallagher, R., & Appenzeller, T. (1999). Beyond reductionism. Science, 284, 79.CrossRefGoogle Scholar
  24. Gesang, B. (2005). Normative Wissenschaftstheorie – Ein längst verstorbener Patient? In B. Gesang (Ed.), Deskriptive oder normative Wissenschaftstheorie? (pp. 11–30). Frankfurt: Ontos.CrossRefGoogle Scholar
  25. Giere, R. N. (1999). Science without laws. Chicago: University of Chicago Press.Google Scholar
  26. Griffiths, P. E. (2007). Philosophy of biology. In S. Sarkar & J. Pfeifer (Eds.), The philosophy of science. An encyclopedia (pp. 68–75). New York: Routledge.Google Scholar
  27. Hempel, C. G. (1965). Aspects of scientific explanation. And other essays in the philosophy of science. New York: Free.Google Scholar
  28. Hull, D. (1974). The philosophy of biological science. Englewood Cliffs: Prentice-Hall.Google Scholar
  29. Hüttemann, A., & Love, A. C. (2011). Aspects of reductive explanation in biological science: Intrinsicality, fundamentality, and temporality. British Journal for Philosophy of Science, 62(3), 519–549.CrossRefGoogle Scholar
  30. Jackson, F. (1998). From metaphysics to ethics. A defense of conceptual analysis. Oxford: Oxford University Press.Google Scholar
  31. Janich, P. (2005). Wissenschaftsphilosophie als kritische Reflexion auf eine historische Praxis. In B. Gesang (Ed.), Deskriptive oder normative Wissenschaftstheorie? (pp. 145–166). Frankfurt: Ontos.Google Scholar
  32. Kaiser, M. I. (2011). Limits of reductionism in the life sciences. History and Philosophy of the Life Sciences, 33, 453–476.Google Scholar
  33. Keil, G., & Schnädelbach, H. (Eds.). (2000). Naturalismus. Philosophische Beiträge. Frankfurt am Main: Suhrkamp.Google Scholar
  34. Kellert, S. H., Longino, H. E., & Waters, C. K. (2006). Introduction: The pluralist stance. In S. H. Kellert, H. E. Longino, & C. K. Waters (Eds.), Scientific pluralism. Minnesota studies in the philosophy of science (pp. vii–xxix). Minneapolis: University of Minnesota Press.Google Scholar
  35. Kitano, H. (2002). Systems biology: A brief overview. Science, 295, 1662–1664.CrossRefGoogle Scholar
  36. Kitcher, P. (1984). 1953 an all that: A tale of two sciences. Philosophical Review, 93, 335–373.CrossRefGoogle Scholar
  37. Kitcher, P. (2011). Philosophy inside out. Metaphilosophy, 42(3), 248–260.CrossRefGoogle Scholar
  38. Kornblith, H. (2007). Naturalism and intuitions. Grazer Philosophische Studien, 74(1), 27–49.Google Scholar
  39. Lewis, D. (1994). Reduction in mind. In S. Guttenplan (Ed.), A companion to philosophy of mind (pp. 412–431). Oxford: Blackwell.Google Scholar
  40. Love, A. C. (2008a). From philosophy to science (to natural philosophy): Evolutionary developmental perspectives. The Quarterly Review of Biology, 83(1), 65–76.CrossRefGoogle Scholar
  41. Love, A. C. (2012a). Formal and material theories in philosophy of science: A methodological interpretation”. In H. K. de Regt, S. Hartmann, & S. Okasha (Eds.), EPSA philosophy of science: Amsterdam 2009 (pp. 175–185). Dordrecht: Springer.CrossRefGoogle Scholar
  42. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  43. Macilwain, C. (2009). Watching science at work. Nature, 462, 840–842.CrossRefGoogle Scholar
  44. Mayr, E. (2004). What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  45. Mazzocchi, F. (2008). Complexity in biology. Exceeding the limits of reductionism and determinism using complexity theory. EMBO Reports, 9, 10–14.CrossRefGoogle Scholar
  46. Mitchell, S. D. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Mitchell, S. D. (2009). Unsimple truths. Science, complexity, and policy. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  48. Mühlhölzer, F. (2005). Naturalismus und Lebenswelt – Plädoyer für eine rein deskriptive Wissenschaftstheorie. In B. Gesang (Ed.), Deskriptive oder normative Wissenschaftstheorie? (pp. 49–73). Frankfurt: Ontos.Google Scholar
  49. Norton, J. (2003). A material theory of induction. Philosophy of Science, 70(4), 647–670.CrossRefGoogle Scholar
  50. Papineau, D. (2009). Naturalism. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2009 Edition). http://plato.stanford.edu/archives/spr2009/entries/naturalism/
  51. Plantinga, A. (1996). Methodological naturalism? In J. Van der Meer (Ed.), Facets of faith and science. Lanham: University Press of America.Google Scholar
  52. Reichenbach, H. (1938). On probability and induction. Philosophy of Science, 5(1), 21–45.CrossRefGoogle Scholar
  53. Rosenberg, A. (1985). The structure of biological science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Rosenberg, A., & McShea, D. W. (2008). Philosophy of biology. A contemporary introduction. New York: Routledge.Google Scholar
  55. Sankey, H. (2013). On the evolution of criteria of theory choice. Metascience, 22(1), 169–172.CrossRefGoogle Scholar
  56. Schaffner, K. F. (1967). Approaches to reduction. Philosophy of Science, 34, 137–147.CrossRefGoogle Scholar
  57. Schaffner, K. F. (1969). The Watson-Crick model and reductionism. British Journal for the Philosophy of Science, 20, 325–348.CrossRefGoogle Scholar
  58. Schaffner, K. F. (1974a). The peripherality of reductionism in the development of molecular biology. Journal of the History of Biology, 7(1), 111–139.CrossRefGoogle Scholar
  59. Schaffner, K. F. (1993). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.Google Scholar
  60. Schaffner, K. F. (2006). Reduction: The Cheshire cat problem and a return to the roots. Synthese, 151, 377–402.CrossRefGoogle Scholar
  61. Schindler, S. (2013). The Kuhnian mode of HPS. Synthese, 190, 4137–4154.CrossRefGoogle Scholar
  62. Schurz, G. (2005). Rationale Rekonstruktion: die Methode der Wissenschaftstheorie. In B. Gesang (Ed.), Deskriptive oder normative Wissenschaftstheorie? (pp. 123–144). Frankfurt: Ontos.Google Scholar
  63. Sober, E. (1999). The multiple realizability argument against reductionism. Philosophy of Science, 66, 542–564.CrossRefGoogle Scholar
  64. Soler, L., Zwart, S., Lynch, M., & Isreal-Jost, V. (Eds.). (2014). Science after the practice turn in the philosophy, history, and social studies of science. New York: Routledge.Google Scholar
  65. Soto, A. M., Rubin, B. S., & Sonnenschein, C. (2009). Interpreting endocrine disruption from an integrative biology perspective. Molecular and Cellular Endocrinology, 304, 3–7.CrossRefGoogle Scholar
  66. Stotz, K., & Griffiths, P. E. (2004). Representing genes: Phase I 2002–2004: Testing Competing philosophical analyses of the gene concept in contemporary molecular biology; phase II 2003–2005: Conceptual issue in the dissemination and reception of genomics. http://www.pitt.edu/~kstotz/genes/genes.html
  67. Stotz, K., & Griffiths, P. E. (2005). Genes: Philosophical analyses put to the test. History and Philosophy of the Life Sciences, 26, 5–28.CrossRefGoogle Scholar
  68. Strange, K. (2005). The end of ‘Naive Reductionism’: Rise of systems biology or renaissance of physiology? American Journal of Physiology - Cell Physiology, 288, 968–974.CrossRefGoogle Scholar
  69. van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  70. Waters, C. K. (2004). What concept analysis in philosophy of science should be (and why competing philosophical analyses of gene concepts cannot be tested by polling scientists). History and Philosophy of the Life Sciences, 26(1), 29–58.CrossRefGoogle Scholar
  71. Waters, C. K. (2008). Beyond theoretical reduction and layer-cake antireduction: How DNA retooled genetics and transformed biological practice. In M. Ruse (Ed.), The Oxford handbook of the philosophy of biology (pp. 238–262). Oxford: Oxford University Press.Google Scholar
  72. Wilson, D. S. (1988). Holism and reductionism in evolutionary ecology. OIKOS, 53(2), 269–273.CrossRefGoogle Scholar
  73. Wimsatt, W. C. (1974). Complexity and organization. PSA, 1972, 67–86.Google Scholar
  74. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings. Piecewise approximations to reality. Cambridge: Harvard University Press.Google Scholar
  75. Woodward, J. (2003). Making things happen. A theory of causal explanation. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marie I. Kaiser
    • 1
  1. 1.Universität zu KölnKölnGermany

Personalised recommendations