Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae

  • Margarida Casal
  • Odília Queirós
  • Gabriel Talaia
  • David Ribas
  • Sandra Paiva
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 892)


This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H+-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.


Carboxylic acids Plasma membrane transporters Yeast Jen1 Ady2 Pdr12 Fps1 



This work was supported by FCT I.P. through the strategic funding UID/BIA/04050/2013 and the project PTDC/BIA-MIC/5184/2014. D.R and G.T. acknowledge FCT for the SFRH/BD/96166/2013 and SFRH/BD/86221/2012, respectively.


  1. Abate G, Bastonini E, Braun KA, Verdone L, Young ET, Caserta M (2012) Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. Biochim Biophys Acta 1819:419–427PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615PubMedCrossRefGoogle Scholar
  3. Agre P, Brown D, Nielsen S (1995) Aquaporin water channels: unanswered questions and unresolved controversies. Curr Opin Cell Biol 7:472–483PubMedCrossRefGoogle Scholar
  4. Ahmadpour D, Geijer C, Tamas MJ, Lindkvist-Petersson K, Hohmann S (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491PubMedCrossRefGoogle Scholar
  5. Andrade RP, Casal M (2001) Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Genet Biol 32:105–111PubMedCrossRefGoogle Scholar
  6. Andrade RP, Kotter P, Entian KD, Casal M (2005) Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 332:254–262PubMedCrossRefGoogle Scholar
  7. Augstein A, Barth K, Gentsch M, Kohlwein SD, Barth G (2003) Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica. Microbiology 149:589–600PubMedCrossRefGoogle Scholar
  8. Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270:3189–3195PubMedCrossRefGoogle Scholar
  9. Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, Haguenauer-Tsapis R, Vincent O, Paiva S, Leon S (2012) A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol 196:247–259PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beese-Sims SE, Lee J, Levin DE (2011) Yeast Fps1 glycerol facilitator functions as a homotetramer. Yeast 28:815–819Google Scholar
  11. Beese-Sims SE, Pan SJ, Lee J, Hwang-Wong E, Cormack BP, Levin DE (2012) Mutants in the Candida glabrata glycerol channels are sensitized to cell wall stress. Eukaryot Cell 11:1512–1519PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bojunga N, Entian KD (1999) Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADP-dependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Mol Gen Genet 262:869–875PubMedCrossRefGoogle Scholar
  13. Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2(2):202–207Google Scholar
  14. Casal M, Paiva S, Andrade RP, Gancedo C, Leao C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181:2620–2623PubMedPubMedCentralGoogle Scholar
  15. Casal M, Paiva S, Queiros O, Soares-Silva I (2008) Transport of carboxylic acids in yeasts. FEMS Microbiol Rev 32:974–994PubMedCrossRefGoogle Scholar
  16. Cassio F, Leao C, van Uden N (1987) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 53:509–513PubMedPubMedCentralGoogle Scholar
  17. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N (2010) Structure of a fucose transporter in an outward-open conformation. Nature 467:734–738PubMedCrossRefGoogle Scholar
  19. de Kok S, Nijkamp JF, Oud B, Roque FC, de Ridder D, Daran JM, Pronk JT, van Maris AJ (2012) Laboratory evolution of new lactate transporter genes in a jen1Delta mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res. doi: 10.1111/j.1567-1364.2012.00787.x
  20. Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145PubMedCrossRefGoogle Scholar
  21. Dulermo R, Gamboa-Melendez H, Michely S, Thevenieau F, Neuveglise C, Nicaud JM (2015) The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia. MicrobiologyOpen 4:100–120PubMedCrossRefGoogle Scholar
  22. Fillinger S, Felenbok B (1996) A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localized in the alc region that are controlled both by the specific transactivator AlcR and the general carbon-catabolite repressor CreA. Mol Microbiol 20:475–488PubMedCrossRefGoogle Scholar
  23. Fleet GH (2007) Yeasts in foods and beverages: impact on product quality and safety. Curr Opin Biotechnol 18:170–175PubMedCrossRefGoogle Scholar
  24. Flipphi M, Robellet X, Dequier E, Leschelle X, Felenbok B, Velot C (2006) Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans. Fungal Genet Biol 43:247–260PubMedCrossRefGoogle Scholar
  25. Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L (2003) The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185:6448–6455PubMedPubMedCentralCrossRefGoogle Scholar
  26. Goffeau A, Slayman CW (1981) The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta 639:197–223PubMedCrossRefGoogle Scholar
  27. Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gregori C, Schuller C, Frohner IE, Ammerer G, Kuchler K (2008) Weak organic acids trigger conformational changes of the yeast transcription factor War1 in vivo to elicit stress adaptation. J Biol Chem 283:25752–25764PubMedCrossRefGoogle Scholar
  29. Grobler J, Bauer F, Subden RE, Van Vuuren HJ (1995) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11:1485–1491PubMedCrossRefGoogle Scholar
  30. Guo H, Liu P, Madzak C, Du G, Zhou J, Chen J (2015) Identification and application of keto acids transporters in Yarrowia lipolytica. Sci Rep 5:8138PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gustavsson S, Lebrun A-S, Nordén K, Chaumont F, Johanson U (2005) A novel plant major intrinsic protein in physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol 139:287–295PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schüller C, Kuchler K, Piper PW (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20:575–585PubMedCrossRefGoogle Scholar
  33. Haurie V, Perrot M, Mini T, Jeno P, Sagliocco F, Boucherie H (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276:76–85PubMedCrossRefGoogle Scholar
  34. Hazelwood LA, Tai SL, Boer VM, de Winde JH, Pronk JT, Daran JM (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6:937–945PubMedCrossRefGoogle Scholar
  35. Hebert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Loux V, Heilier JF, Bonnarme P, Beckerich JM, Landaud S (2011) Exploration of sulfur metabolism in the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 91:1409–1423PubMedCrossRefGoogle Scholar
  36. Hedges D, Proft M, Entian KD (1995) CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15:1915–1922PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hohmann I, Bill RM, Kayingo I, Prior BA (2000) Microbial MIP channels. Trends Microbiol 8:33–38PubMedCrossRefGoogle Scholar
  38. Holyoak CD, Bracey D, Piper PW, Kuchler K, Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181:4644–4652PubMedPubMedCentralGoogle Scholar
  39. Holyoak CD, Thompson S, Ortiz Calderon C, Hatzixanthis K, Bauer B, Kuchler K, Piper PW, Coote PJ (2000) Loss of Cmk1 Ca(2+)-calmodulin-dependent protein kinase in yeast results in constitutive weak organic acid resistance, associated with a post-transcriptional activation of the Pdr12 ATP-binding cassette transporter. Mol Microbiol 37:595–605PubMedCrossRefGoogle Scholar
  40. Huang YF, Lemieux MJ, Song JM, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620PubMedCrossRefGoogle Scholar
  41. Jandric Z, Gregori C, Klopf E, Radolf M, Schüller C (2013) Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway. Front Microbiol 4:350PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Molecular and cellular biology 23:1775–1785PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kujau M, Weber H, Barth G (1992) Characterization of mutants of the yeast Yarrowia lipolytica defective in acetyl-coenzyme A synthetase. Yeast 8:193–203PubMedCrossRefGoogle Scholar
  44. Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD (2010) Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genet Biol 47:127–142PubMedCrossRefGoogle Scholar
  45. Leão C, van Uden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl Microbiol Biotechnol 23:389CrossRefGoogle Scholar
  46. Lebel K, MacPherson S, Turcotte B (2006) New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate. Yeast 23:249–259PubMedCrossRefGoogle Scholar
  47. Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE (2013) MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27:2590–2601PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lis P, Zarzycki M, Ko YH, Casal M, Pedersen PL, Goffeau A, Ulaszewski S (2012) Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr 44:155–161PubMedCrossRefGoogle Scholar
  49. Lodi T, Diffels J, Goffeau A, Baret PV (2007) Evolution of the carboxylate Jen transporters in fungi. FEMS Yeast Res 7:646–656PubMedCrossRefGoogle Scholar
  50. Lodi T, Fontanesi F, Ferrero I, Donnini C (2004) Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene 339:111–119PubMedCrossRefGoogle Scholar
  51. Lodi T, Fontanesi F, Guiard B (2002) Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1. Mol Genet Genom 266:838–847CrossRefGoogle Scholar
  52. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371PubMedPubMedCentralGoogle Scholar
  53. Marger MD, Saier MH Jr (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20PubMedCrossRefGoogle Scholar
  54. Martinez L, Falson P (2014) Multidrug resistance ATP-binding cassette membrane transporters as targets for improving oropharyngeal candidiasis treatment. Adv Cell Mol Otalaryngol 2:23955CrossRefGoogle Scholar
  55. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235PubMedPubMedCentralGoogle Scholar
  56. McDermott JR, Rosen BP, Liu Z (2010) Jen1p: a high affinity selenite transporter in yeast. Mol Biol cell 21:3934–3941PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mira NP, Becker JD, Sa-Correia I (2010) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. Omics 14:587–601PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mollapour, M., & Piper, P. W. (2008). Chapter 10. In Simon MS, Avery V, Pieter Van W (eds) Weak organic acid resistance of spoilage yeasts. British Mycological Society symposia series. Academic Press, New York, pp 143–155Google Scholar
  60. Mollapour M, Piper PW (2012) Activity of the yeast zinc-finger transcription factor War1 is lost with alanine mutation of two putative phosphorylation sites in the activation domain. Yeast 29:39–44PubMedCrossRefGoogle Scholar
  61. Mota S, Vieira N, Barbosa S, Delaveau T, Torchet C, Le Saux A, Garcia M, Pereira A, Lemoine S, Coulpier F et al (2014) Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae. PloS One 9, e111589PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mundy RD, Cormack B (2009) Expression of Candida glabrata Adhesins after exposure to chemical preservatives. J Infect Dis 199:1891–1898PubMedPubMedCentralCrossRefGoogle Scholar
  63. Neves L, Oliveira R, Lucas C (2004) Yeast orthologues associated with glycerol transport and metabolism. FEMS Yeast Res 5:51–62PubMedCrossRefGoogle Scholar
  64. Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP, Sansom MS, McPherson MJ et al (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 30:417–426PubMedCrossRefGoogle Scholar
  65. Nygard Y (2014). Production of D-xylonate and organic acid tolerance in yeast. PhD thesis, Aalto University School of Chemical Technology, Espoo, FinlandGoogle Scholar
  66. Nygård Y, Mojzita D, Toivari M, Penttilä M, Wiebe MG, Ruohonen L (2014) The diverse role of Pdr12 in resistance to weak organic acids. Yeast 31:219–232PubMedCrossRefGoogle Scholar
  67. Olesen JT, Guarente L (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Genes Dev 4(10):1714–1729Google Scholar
  68. Olszewska M, Bujarski JJ, Kurpisz M (2012) P-bodies and their functions during mRNA cell cycle: mini-review. Cell Biochem Funct 30:177–182PubMedCrossRefGoogle Scholar
  69. Osothsilp C, Subden RE (1986) Malate transport in Schizosaccharomyces pombe. J Bacteriol 168:1439–1443PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pacheco A, Talaia G, Sa-Pessoa J, Bessa D, Goncalves MJ, Moreira R, Paiva S, Casal M, Queiros O (2012) Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Res 12:375–381PubMedCrossRefGoogle Scholar
  71. Paiva S, Devaux F, Barbosa S, Jacq C, Casal M (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21:201–210PubMedCrossRefGoogle Scholar
  72. Paiva S, Kruckeberg AL, Casal M (2002) Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem J 363:737–744PubMedPubMedCentralCrossRefGoogle Scholar
  73. Paiva S, Vieira N, Nondier I, Haguenauer-Tsapis R, Casal M, Urban-Grimal D (2009) Glucose-induced ubiquitylation and endocytosis of the yeast Jen1 transporter: role of lysine 63-linked ubiquitin chains. Journal Biol Chem 284:19228–19236CrossRefGoogle Scholar
  74. Palkova Z, Devaux F, Icicova M, Minarikova L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13:3901–3914PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2005) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500PubMedCrossRefGoogle Scholar
  76. Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642PubMedCrossRefGoogle Scholar
  77. Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K (1998) The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265PubMedPubMedCentralCrossRefGoogle Scholar
  78. Piper PW (2011) Chapter 4 - Resistance of yeasts to weak organic acid food preservatives. In Allen SS, Laskin I, Geoffrey MG (eds) Advances in applied microbiology, vol 77. Academic Press, pp 97–113Google Scholar
  79. Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2:12–24PubMedPubMedCentralCrossRefGoogle Scholar
  80. Prasad R, Goffeau A (2012) Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu Rev Microbiol 66:39–63PubMedCrossRefGoogle Scholar
  81. Queiros O, Pereira L, Paiva S, Moradas-Ferreira P, Casal M (2007) Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes. Curr Genet 51:161–169PubMedCrossRefGoogle Scholar
  82. Rabitsch KP, Toth A, Galova M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M et al (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11:1001–1009PubMedCrossRefGoogle Scholar
  83. Randez-Gil F, Bojunga N, Proft M, Entian KD (1997) Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17:2502–2510PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ratnakumar S, Kacherovsky N, Arms E, Young ET (2009) Snf1 controls the activity of adr1 through dephosphorylation of Ser230. Genetics 182:735–745PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913CrossRefGoogle Scholar
  86. Richard GF, Fairhead C, Dujon B (1997) Complete transcriptional map of yeast chromosome XI in different life conditions. J Mol Biol 268:303–321PubMedCrossRefGoogle Scholar
  87. Robellet X, Flipphi M, Pegot S, Maccabe AP, Velot C (2008) AcpA, a member of the GPR1/FUN34/YaaH membrane protein family, is essential for acetate permease activity in the hyphal fungus Aspergillus nidulans. Biochem J 412:485–493PubMedCrossRefGoogle Scholar
  88. Rockwell N, Wolfger H, Kuchler K, Thorner J (2009) ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol 229:27–52PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rohlin L, Gunsalus RP (2010) Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. BMC Microbiol 10:62PubMedPubMedCentralCrossRefGoogle Scholar
  90. Russell NJ, Gould G (2003) Acidulants and low pH. In: Russell NJ, Gould G (eds) Food preservatives. Springer, New York, pp 25–47Google Scholar
  91. Sá-Pessoa J, Amillis S, Casal M, Diallinas G (2015) Expression and specificity profile of the major acetate transporter AcpA in Aspergillus nidulans. Fungal Genet Biol 76:93–103PubMedCrossRefGoogle Scholar
  92. Sa-Pessoa J, Paiva S, Ribas D, Silva IJ, Viegas SC, Arraiano CM, Casal M (2013) SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli. Biochem J 454:585–595PubMedCrossRefGoogle Scholar
  93. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108PubMedCrossRefGoogle Scholar
  94. Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years research on lactic acid production with yeast – ready for the market? Biotechnol Genet Eng Rev 27:229–256PubMedCrossRefGoogle Scholar
  95. Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777–5782PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26PubMedCrossRefGoogle Scholar
  97. Seret M-L, Diffels J, Goffeau A, Baret P (2009) Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts. BMC Genomics 10:459PubMedPubMedCentralCrossRefGoogle Scholar
  98. Soares-Silva I, Paiva S, Diallinas G, Casal M (2007) The conserved sequence NXX[S/T]HX[S/T]QDXXXT of the lactate/pyruvate:H(+) symporter subfamily defines the function of the substrate translocation pathway. Mol Membr Biol 24:464–474PubMedCrossRefGoogle Scholar
  99. Soares-Silva I, Sa-Pessoa J, Myrianthopoulos V, Mikros E, Casal M, Diallinas G (2011) A substrate translocation trajectory in a cytoplasm-facing topological model of the monocarboxylate/H(+) symporter Jen1p. Mol Microbiol 81:805–817PubMedCrossRefGoogle Scholar
  100. Soares-Silva I, Schuller D, Andrade RP, Baltazar F, Cassio F, Casal M (2003) Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochem J 376:781–787PubMedPubMedCentralCrossRefGoogle Scholar
  101. Soares-Silva I, Ribas D, Foskolou Z, Barata B, Bessa D, Queiros O, Paiva S, Casal (2015) The Debaryomyces hansenii carboxylate transporters Jen1 homologues are functional in Saccharomyces cerevisiae. FEMS Yeast Res.
  102. Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421PubMedPubMedCentralCrossRefGoogle Scholar
  103. Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007) Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 27:7895–7905PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI, Young ET (2005) Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol 25:2138–2146PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tamas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J et al (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104PubMedCrossRefGoogle Scholar
  106. Tzschoppe K, Augstein A, Bauer R, Kohlwein SD, Barth G (1999) Trans-dominant mutations in the GPR1 gene cause high sensitivity to acetic acid and ethanol in the yeast Yarrowia lipolytica. Yeast 15:1645–1656PubMedCrossRefGoogle Scholar
  107. Ullah A, Chandrasekaran G, Brul S, Smits GJ (2013) Yeast adaptation to weak acids prevents futile energy expenditure. Front Microbiol 4:142PubMedPubMedCentralCrossRefGoogle Scholar
  108. van Maris AJ, Konings WN, van Dijken JP, Pronk JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6:245–255PubMedCrossRefGoogle Scholar
  109. Verma RK, Prabh ND, Sankararamakrishnan R (2014) New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions. BMC Evol Biol 14:173PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401PubMedCrossRefGoogle Scholar
  111. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Margarida Casal
    • 1
  • Odília Queirós
    • 1
    • 2
  • Gabriel Talaia
    • 1
  • David Ribas
    • 1
  • Sandra Paiva
    • 1
  1. 1.CBMA-Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoBragaPortugal
  2. 2.CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeGandraPortugal

Personalised recommendations