Proton Transport and pH Control in Fungi

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 892)


Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.


S. cerevisiae Proton pump Cytosolic pH Organelle acidification pH sensing and growth pH signaling V-ATPase Pma1 



Work in the Kane lab is funded by NIH R01 GM50322. Many thanks to the investigators who provided the decades of work leading to our current understanding of fungal pH transport and pH homeostasis and apologies to all whose work I was unable to cite.


  1. Ali R, Brett CL, Mukherjee S, Rao R (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279(6):4498–4506PubMedCrossRefGoogle Scholar
  2. Ambesi A, Miranda M, Petrov VV, Slayman CW (2000) Biogenesis and function of the yeast plasma-membrane H(+)-ATPase. J Exp Biol 203(Pt 1):155–160PubMedGoogle Scholar
  3. Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1):95–120. doi:74/1/95 [pii] 10.1128/MMBR.00042-09 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Auer M, Scarborough GA, Kuhlbrandt W (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392(6678):840–843. doi: 10.1038/33967 PubMedCrossRefGoogle Scholar
  5. Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005) Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem 280(26):25127–25133. doi:M414579200 [pii] 10.1074/jbc.M414579200 PubMedCrossRefGoogle Scholar
  6. Bader T, Schroppel K, Bentink S, Agabian N, Kohler G, Morschhauser J (2006) Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74(7):4366–4369. doi:74/7/4366 [pii] 10.1128/IAI.00142-06 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balakrishna AM, Basak S, Manimekalai MS, Gruber G (2014) Crystal structure of subunits D and F in complex give insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem. doi:M114.622688 [pii] 10.1074/jbc.M114.622688
  8. Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144(Pt 10):2749–2758PubMedGoogle Scholar
  9. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406. doi:S0962-8924(14)00036-1 [pii] 10.1016/j.tcb.2014.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beauvoit B, Rigoulet M, Raffard G, Canioni P, Guerin B (1991) Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Biochemistry (Mosc) 30(47):11212–11220CrossRefGoogle Scholar
  11. Benlekbir S, Bueler SA, Rubinstein JL (2012) Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-A resolution. Nat Struct Mol Biol 19(12):1356–1362. doi:nsmb.2422 [pii] 10.1038/nsmb.2422 PubMedCrossRefGoogle Scholar
  12. Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70(3):611–625. doi: 10.1002/prot.21688 PubMedCrossRefGoogle Scholar
  13. Bensen ES, Martin SJ, Li M, Berman J, Davis DA (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54(5):1335–1351. doi:MMI4350 [pii] 10.1111/j.1365-2958.2004.04350.x PubMedCrossRefGoogle Scholar
  14. Bond S, Forgac M (2008) The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. J Biol Chem 283(52):36513–36521. doi:M805232200 [pii] 10.1074/jbc.M805232200 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bowman EJ, Bowman BJ (2000) Cellular role of the V-ATPase in Neurospora crassa: analysis of mutants resistant to concanamycin or lacking the catalytic subunit A. J Exp Biol 203(Pt 1):97–106PubMedGoogle Scholar
  16. Bowman BJ, Bowman EJ (2002) Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem 277(6):3965–3972PubMedCrossRefGoogle Scholar
  17. Bowman BJ, Allen R, Wechser MA, Bowman EJ (1988a) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem 263(28):14002–14007PubMedGoogle Scholar
  18. Bowman EJ, Tenney K, Bowman BJ (1988b) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem 263(28):13994–14001PubMedGoogle Scholar
  19. Bowman EJ, Siebers A, Altendorf K (1988c) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85(21):7972–7976PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bowman EJ, O’Neill FJ, Bowman BJ (1997) Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem 272(23):14776–14786PubMedCrossRefGoogle Scholar
  21. Bowman EJ, Kendle R, Bowman BJ (2000) Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H(+)-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem 275(1):167–176PubMedCrossRefGoogle Scholar
  22. Bowman EJ, Gustafson KR, Bowman BJ, Boyd MR (2003) Identification of a new chondropsin class of antitumor compound that selectively inhibits V-ATPases. J Biol Chem 278(45):44147–44152. doi: 10.1074/jbc.M306595200M306595200 [pii]PubMedCrossRefGoogle Scholar
  23. Bowman EJ, Graham LA, Stevens TH, Bowman BJ (2004) The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279(32):33131–33138PubMedCrossRefGoogle Scholar
  24. Boysen JH, Mitchell AP (2006) Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol Biol Cell 17(3):1344–1353. doi:E05-10-0949 [pii] 10.1091/mbc.E05-10-0949 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Braun NA, Morgan B, Dick TP, Schwappach B (2010) The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci 123(Pt 13):2342–2350. doi:jcs.068403 [pii] 10.1242/jcs.068403 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brett CL, Tukaye DN, Mukherjee S, Rao R (2005a) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16(3):1396–1405PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brett CL, Donowitz M, Rao R (2005b) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288(2):C223–C239PubMedCrossRefGoogle Scholar
  28. Brett CL, Kallay L, Hua Z, Green R, Chyou A, Zhang Y, Graham TR, Donowitz M, Rao R (2011) Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae. PLoS One 6(3):e17619. doi: 10.1371/journal.pone.0017619 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Calahorra M, Martinez GA, Hernandez-Cruz A, Pena A (1998) Influence of monovalent cations on yeast cytoplasmic and vacuolar pH. Yeast 14(6):501–515PubMedCrossRefGoogle Scholar
  30. Carman GM, Henry SA (2007) Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 282(52):37293–37297. doi:R700038200 [pii] 10.1074/jbc.R700038200 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Carmelo V, Santos H, Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325(1):63–70PubMedCrossRefGoogle Scholar
  32. Casamayor A, Serrano R, Platara M, Casado C, Ruiz A, Arino J (2012) The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem J 444(1):39–49. doi:BJ20112099 [pii] 10.1042/BJ20112099 PubMedCrossRefGoogle Scholar
  33. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61. doi:nrm2820 [pii] 10.1038/nrm2820 PubMedCrossRefGoogle Scholar
  34. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12(2):323–337PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chan CY, Parra KJ (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent V-ATPase reassembly. J Biol Chem. doi:M114.569855 [pii] 10.1074/jbc.M114.569855
  36. Chang A, Slayman CW (1991) Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. J Cell Biol 115(2):289–295PubMedCrossRefGoogle Scholar
  37. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254–299. doi: 10.1111/1574-6976.12065 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cornet M, Gaillardin C (2014) pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 13(3):342–352. doi:EC.00313-13 [pii] 10.1128/EC.00313-13 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12(4):365–370. doi:S1369-5274(09)00055-1 [pii] 10.1016/j.mib.2009.05.006 PubMedCrossRefGoogle Scholar
  40. Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29(15):2515–2526. doi:emboj2010138 [pii] 10.1038/emboj.2010.138 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dechant R, Saad S, Ibanez AJ, Peter M (2014) Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol Cell 55(3):409–421. doi:S1097-2765(14)00484-5 [pii] 10.1016/j.molcel.2014.06.002 PubMedCrossRefGoogle Scholar
  42. Diakov TT, Kane PM (2010a) Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J Biol Chem 285(31):23771–23778. doi:M110.110122 [pii] 10.1074/jbc.M110.110122 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Diakov TT, Kane PM (2010b) Regulation of V-ATPase activity and assembly by extracellular pH. J Biol Chem. doi:M110.110122 [pii] 10.1074/jbc.M110.110122
  44. Diakov TT, Tarsio M, Kane PM (2013) Measurement of vacuolar and cytosolic pH in vivo in yeast cell suspensions. J Vis Exp Apr 19(74). doi: 10.3791/50261
  45. Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25(12):2911–2918PubMedPubMedCentralCrossRefGoogle Scholar
  46. Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry (Mosc) 32(15):3902–3906CrossRefGoogle Scholar
  47. Dschida WJ, Bowman BJ (1992) Structure of the vacuolar ATPase from Neurospora crassa as determined by electron microscopy. J Biol Chem 267(26):18783–18789PubMedGoogle Scholar
  48. Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5(4):723–731PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dunn SD, McLachlin DT, Revington M (2000) The second stalk of Escherichia coli ATP synthase. Biochim Biophys Acta 1458(2–3):356–363PubMedCrossRefGoogle Scholar
  50. Eraso P, Gancedo C (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett 224(1):187–192PubMedCrossRefGoogle Scholar
  51. Eraso P, Portillo F (1994) Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J Biol Chem 269(14):10393–10399PubMedGoogle Scholar
  52. Eraso P, Mazon MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758(2):164–170PubMedCrossRefGoogle Scholar
  53. Esteban O, Bernal RA, Donohoe M, Videler H, Sharon M, Robinson CV, Stock D (2008) Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. J Biol Chem 283(5):2595–2603. doi:M704941200 [pii] 10.1074/jbc.M704941200 PubMedCrossRefGoogle Scholar
  54. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8(11):917–929. doi:nrm2272 [pii] 10.1038/nrm2272 PubMedCrossRefGoogle Scholar
  55. Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236(2–3):363–368PubMedCrossRefGoogle Scholar
  56. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gillies RJ, Ugurbil K, den Hollander JA, Shulman RG (1981) 31P NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78(4):2125–2129PubMedPubMedCentralCrossRefGoogle Scholar
  58. Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20(20):7654–7661PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gruber G, Wieczorek H, Harvey WR, Muller V (2001) Structure-function relationships of A-, F- and V-ATPases. J Exp Biol 204(Pt 15):2597–2605PubMedGoogle Scholar
  60. Gruber G, Manimekalai MS, Mayer F, Muller V (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837(6):940–952. doi:S0005-2728(14)00091-7 [pii] 10.1016/j.bbabio.2014.03.004 PubMedCrossRefGoogle Scholar
  61. Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291(2):189–191. doi:0014-5793(91)81280-L [pii]Google Scholar
  62. Hayek SR, Lee SA, Parra KJ (2014) Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy. Front Pharmacol 5:4. doi: 10.3389/fphar.2014.00004 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Henderson KA, Hughes AL, Gottschling DE (2014) Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. Elife 3:e03504. doi: 10.7554/eLife.03504 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Herrador A, Herranz S, Lara D, Vincent O (2010) Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol Cell Biol 30(4):897–907. doi:MCB.00132-09 [pii] 10.1128/MCB.00132-09 PubMedCrossRefGoogle Scholar
  65. Herrador A, Leon S, Haguenauer-Tsapis R, Vincent O (2013) A mechanism for protein monoubiquitination dependent on a trans-acting ubiquitin binding domain. J Biol Chem 288(23):16206–16211. doi:C113.452250 [pii] 10.1074/jbc.C113.452250 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Herranz S, Rodriguez JM, Bussink HJ, Sanchez-Ferrero JC, Arst HN Jr, Penalva MA, Vincent O (2005) Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci U S A 102(34):12141–12146. doi:0504776102 [pii] 10.1073/pnas.0504776102 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hirata R, Takatsuki A (2001) Role of organelle acidification in intracellular protein transport. RIKEN Rev 41:90–91Google Scholar
  68. Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62(9):3158–3164PubMedPubMedCentralGoogle Scholar
  69. Huang C, Chang A (2011) pH-dependent cargo sorting from the Golgi. J Biol Chem 286(12):10058–10065. doi:M110.197889 [pii] 10.1074/jbc.M110.197889 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428):261–265. doi:nature11654 [pii] 10.1038/nature11654 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL (2015) Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347(6218):194–198. doi:science.1259472 [pii] 10.1126/science.1259472 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jin R, Dobry CJ, McCown PJ, Kumar A (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284–296. doi:E07-05-0519 [pii] 10.1091/mbc.E07-05-0519 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Johnston M (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15(1):29–33PubMedCrossRefGoogle Scholar
  74. Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. The molecular and cellular biology of the yeast Saccharomyces. Gene Expr 2:193–281Google Scholar
  75. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem 270(28):17025–17032PubMedGoogle Scholar
  76. Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70(1):177–191PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kane PM (2007) The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39(5–6):415–421. doi: 10.1007/s10863-007-9112-z PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 35(4):313–321PubMedCrossRefGoogle Scholar
  79. Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924–936PubMedCrossRefGoogle Scholar
  80. Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001a) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276(50):47411–47420PubMedCrossRefGoogle Scholar
  81. Kawasaki-Nishi S, Nishi T, Forgac M (2001b) Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276(21):17941–17948PubMedCrossRefGoogle Scholar
  82. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363–371. doi:nprot.2009.2 [pii] 10.1038/nprot.2009.2 PubMedCrossRefGoogle Scholar
  83. Kibak H, Taiz L, Starke T, Bernasconi P, Gogarten JP (1992) Evolution of structure and function of V-ATPases. J Bioenerg Biomembr 24(4):415–424PubMedCrossRefGoogle Scholar
  84. Kitagawa N, Mazon H, Heck AJ, Wilkens S (2008) Stoichiometry of the peripheral stalk subunits E and G of yeast V1-ATPase determined by mass spectrometry. J Biol Chem 283(6):3329–3337PubMedCrossRefGoogle Scholar
  85. Kondapalli KC, Prasad H, Rao R (2014) An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 8:172. doi: 10.3389/fncel.2014.00172 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kuhlbrandt W, Zeelen J, Dietrich J (2002) Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 297(5587):1692–1696. doi: 10.1126/science.10725741072574 [pii]PubMedCrossRefGoogle Scholar
  87. Kulkarny VV, Chavez-Dozal A, Rane HS, Jahng M, Bernardo SM, Parra KJ, Lee SA (2014) Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob Agents Chemother 58(12):7501–7509. doi:AAC.03083-14 [pii] 10.1128/AAC.03083-14 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kullas AL, Martin SJ, Davis D (2007) Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66(4):858–871. doi:MMI5929 [pii] 10.1111/j.1365-2958.2007.05929.x PubMedCrossRefGoogle Scholar
  89. Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346(6205):71–75. doi:346/6205/71 [pii] 10.1126/science.1257859 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23(2):677–686PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276(3):1850–1856. doi: 10.1074/jbc.M008381200M008381200 [pii]PubMedCrossRefGoogle Scholar
  92. Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380):214–218. doi:nature10699 [pii] 10.1038/nature10699 CrossRefGoogle Scholar
  93. Lecchi S, Allen KE, Pardo JP, Mason AB, Slayman CW (2005) Conformational changes of yeast plasma membrane H+-ATPase during activation by glucose: role of Threonine-912 in the carboxy-terminal tail. Biochemistry (Mosc) 44(50):16624–16632. doi: 10.1021/bi051555f CrossRefGoogle Scholar
  94. Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL, Coon JJ, Sussman MR, Slayman CW (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282(49):35471–35481PubMedCrossRefGoogle Scholar
  95. Li SC, Diakov TT, Rizzo JM, Kane PM (2012) Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress. Eukaryot Cell 11(3):282–291. doi:EC.05198-11 [pii] 10.1128/EC.05198-11 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, Weisman LS, Kane PM (2014) The signaling lipid PI(3,5)P(2) stabilizes V(1)-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 25(8):1251–1262. doi:mbc.E13-10-0563 [pii] 10.1091/mbc.E13-10-0563 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lu M, Sautin YY, Holliday LS, Gluck SL (2003) The glycolytic enzyme aldolase mediates assembly, expression and activity of V-ATPase. J Biol Chem 279:8732–8739Google Scholar
  98. Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064–14074PubMedGoogle Scholar
  99. Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283(29):20309–20319. doi:M710470200 [pii] 10.1074/jbc.M710470200 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Martinez-Munoz GA, Pena A (2005) In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae. Yeast 22(9):689–704PubMedCrossRefGoogle Scholar
  101. McCusker JH, Perlin DS, Haber JE (1987) Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 7(11):4082–4088PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700PubMedCrossRefGoogle Scholar
  103. Mira NP, Lourenco AB, Fernandes AR, Becker JD, Sa-Correia I (2009) The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 9(2):202–216. doi:FYR473 [pii] 10.1111/j.1567-1364.2008.00473.x PubMedCrossRefGoogle Scholar
  104. Mira NP, Teixeira MC, Sa-Correia I (2010) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14(5):525–540. doi: 10.1089/omi.2010.0072 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mollapour M, Fong D, Balakrishnan K, Harris N, Thompson S, Schuller C, Kuchler K, Piper PW (2004) Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21(11):927–946. doi: 10.1002/yea.1141 PubMedCrossRefGoogle Scholar
  106. Moller JV, Nissen P, Sorensen TL, le Maire M (2005) Transport mechanism of the sarcoplasmic reticulum Ca2+-ATPase pump. Curr Opin Struct Biol 15(4):387–393. doi:S0959-440X(05)00122-3 [pii] 10.1016/ PubMedCrossRefGoogle Scholar
  107. Monk BC, Niimi M, Shepherd MG (1993) The Candida albicans plasma membrane and H(+)-ATPase during yeast growth and germ tube formation. J Bacteriol 175(17):5566–5574PubMedPubMedCentralCrossRefGoogle Scholar
  108. Monk BC, Mason AB, Abramochkin G, Haber JE, Seto-Young D, Perlin DS (1995) The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochim Biophys Acta 1239(1):81–90PubMedCrossRefGoogle Scholar
  109. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450(7172):1043–1049PubMedCrossRefGoogle Scholar
  110. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (2011) A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12(1):60–70. doi:nrm3031 [pii] 10.1038/nrm3031 PubMedCrossRefGoogle Scholar
  111. Munn AL, Riezman H (1994) Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes. J Cell Biol 127(2):373–386PubMedCrossRefGoogle Scholar
  112. Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 273(33):21054–21060PubMedCrossRefGoogle Scholar
  113. Nass R, Rao R (1999) The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145(Pt 11):3221–3228PubMedCrossRefGoogle Scholar
  114. Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87(9):3503–3507PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, Mitchell AP, Filler SG (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10(11):2180–2196. doi:CMI1198 [pii] 10.1111/j.1462-5822.2008.01198.x PubMedPubMedCentralCrossRefGoogle Scholar
  116. Obara K, Kihara A (2014) Signaling events of the Rim101 pathway occur at the plasma membrane in a ubiquitination-dependent manner. Mol Cell Biol 34(18):3525–3534. doi:MCB.00408-14 [pii] 10.1128/MCB.00408-14 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ohira M, Smardon AM, Charsky CM, Liu J, Tarsio M, Kane PM (2006) The E and G subunits of the yeast V-ATPase interact tightly and are both present at more than one copy per V1 complex. J Biol Chem 281:22752–22760PubMedCrossRefGoogle Scholar
  118. Ohya Y, Umemoto N, Tanida I, Ohta A, Iida H, Anraku Y (1991) Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. J Biol Chem 266(21):13971–13977PubMedGoogle Scholar
  119. Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450(7172):1036–1042PubMedCrossRefGoogle Scholar
  120. Oot RA, Wilkens S (2012) Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J Biol Chem 287(16):13396–13406. doi:M112.343962 [pii] 10.1074/jbc.M112.343962 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155(Pt 1):268–278. doi:155/1/268 [pii] 10.1099/mic.0.022038-0 PubMedCrossRefGoogle Scholar
  122. Orij R, Brul S, Smits GJ (2011) Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta 1810(10):933–944. doi:S0304-4165(11)00060-2 [pii] 10.1016/j.bbagen.2011.03.011 PubMedCrossRefGoogle Scholar
  123. Orij R, Urbanus ML, Vizeacoumar FJ, Giaever G, Boone C, Nislow C, Brul S, Smits GJ (2012) Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 13(9):R80. doi:gb-2012-13-9-r80 [pii] 10.1186/gb-2012-13-9-r80 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Owegi MA, Pappas DL, Finch MW Jr, Bilbo SA, Resendiz CA, Jacquemin LJ, Warrier A, Trombley JD, McCulloch KM, Margalef KL, Mertz MJ, Storms JM, Damin CA, Parra KJ (2006) Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. J Biol Chem 281(40):30001–30014PubMedCrossRefGoogle Scholar
  125. Parra KJ, Kane PM (1998) Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18(12):7064–7074PubMedPubMedCentralCrossRefGoogle Scholar
  126. Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 275(28):21761–21767PubMedCrossRefGoogle Scholar
  127. Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22(1):62–69PubMedCrossRefGoogle Scholar
  128. Patenaude C, Zhang Y, Cormack B, Kohler J, Rao R (2013) Essential role for vacuolar acidification in Candida albicans virulence. J Biol Chem 288(36):26256–26264. doi:M113.494815 [pii] 10.1074/jbc.M113.494815 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450(7172):1111–1114PubMedCrossRefGoogle Scholar
  130. Penalva MA, Arst HN Jr (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66(3):426–446PubMedPubMedCentralCrossRefGoogle Scholar
  131. Penalva MA, Tilburn J, Bignell E, Arst HN Jr (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16(6):291–300. doi:S0966-842X(08)00090-5 [pii] 10.1016/j.tim.2008.03.006 PubMedCrossRefGoogle Scholar
  132. Penalva MA, Lucena-Agell D, Arst HN Jr (2014) Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 22C:49–59. doi:S1369-5274(14)00125-8 [pii] 10.1016/j.mib.2014.09.005 CrossRefGoogle Scholar
  133. Perlin DS, Brown CL, Haber JE (1988) Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263(34):18118–18122PubMedGoogle Scholar
  134. Perlin DS, Harris SL, Seto-Young D, Haber JE (1989) Defective H(+)-ATPase of hygromycin B-resistant pma1 mutants from Saccharomyces cerevisiae. J Biol Chem 264(36):21857–21864PubMedGoogle Scholar
  135. Perona R, Portillo F, Giraldez F, Serrano R (1990) Transformation and pH homeostasis of fibroblasts expressing yeast H(+)-ATPase containing site-directed mutations. Mol Cell Biol 10(8):4110–4115PubMedPubMedCentralCrossRefGoogle Scholar
  136. Perzov N, Nelson H, Nelson N (2000) Altered distribution of the yeast plasma membrane H+-ATPase as a feature of vacuolar H+-ATPase null mutants. J Biol Chem 275(51):40088–40095PubMedCrossRefGoogle Scholar
  137. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi: 10.1002/jcc.20084 PubMedCrossRefGoogle Scholar
  138. Plant PJ, Manolson MF, Grinstein S, Demaurex N (1999) Alternative mechanisms of vacuolar acidification in H(+)-ATPase-deficient yeast. J Biol Chem 274(52):37270–37279PubMedCrossRefGoogle Scholar
  139. Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Arino J (2006) The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281(48):36632–36642. doi:M606483200 [pii] 10.1074/jbc.M606483200 PubMedCrossRefGoogle Scholar
  140. Poltermann S, Nguyen M, Gunther J, Wendland J, Hartl A, Kunkel W, Zipfel PF, Eck R (2005) The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. Microbiology 151(Pt 5):1645–1655PubMedCrossRefGoogle Scholar
  141. Portillo F (2000) Regulation of plasma membrane H(+)-ATPase in fungi and plants. Biochim Biophys Acta 1469(1):31–42PubMedCrossRefGoogle Scholar
  142. Portillo F, de Larrinoa IF, Serrano R (1989) Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Lett 247(2):381–385PubMedCrossRefGoogle Scholar
  143. Portillo F, Eraso P, Serrano R (1991) Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Lett 287(1–2):71–74PubMedCrossRefGoogle Scholar
  144. Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275(23):17249–17255PubMedCrossRefGoogle Scholar
  145. Poznanski J, Szczesny P, Ruszczynska K, Zielenkiewicz P, Paczek L (2013) Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm. Biochem Biophys Res Commun 430(2):741–744. doi:S0006-291X(12)02254-1 [pii] 10.1016/j.bbrc.2012.11.079 PubMedCrossRefGoogle Scholar
  146. Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity. J Biol Chem 282(34):24743–24751. doi:M700663200 [pii] 10.1074/jbc.M700663200 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Raines SM, Rane HS, Bernardo SM, Binder JL, Lee SA, Parra KJ (2013) Deletion of vacuolar proton-translocating ATPase V(o)a isoforms clarifies the role of vacuolar pH as a determinant of virulence-associated traits in Candida albicans. J Biol Chem 288(9):6190–6201. doi:M112.426197 [pii] 10.1074/jbc.M112.426197 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rane HS, Bernardo SM, Raines SM, Binder JL, Parra KJ, Lee SA (2013) Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. Eukaryot Cell 12(10):1369–1382. doi:EC.00118-13 [pii] 10.1128/EC.00118-13 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22(23):6182–6192. doi: 10.1093/emboj/cdg608 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25(2):575–589PubMedPubMedCentralCrossRefGoogle Scholar
  151. Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15(2):706–720. doi: 10.1091/mbc.E03-05-0322E03-05-0322 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  152. Seol JH, Shevchenko A, Deshaies RJ (2001) Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3(4):384–391PubMedCrossRefGoogle Scholar
  153. Serra-Cardona A, Petrezselyova S, Canadell D, Ramos J, Arino J (2014) Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 34(24):4420–4435. doi:MCB.01089-14 [pii] 10.1128/MCB.01089-14 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156(1):11–14PubMedCrossRefGoogle Scholar
  155. Serrano R (1991) Transport across yeast vacuolar and plasma membranes. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 523–585Google Scholar
  156. Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319(6055):689–693PubMedCrossRefGoogle Scholar
  157. Serrano R, Bernal D, Simon E, Arino J (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279(19):19698–19704. Epub 12004 Mar 19601PubMedCrossRefGoogle Scholar
  158. Seto-Young D, Monk B, Mason AB, Perlin DS (1997) Exploring an antifungal target in the plasma membrane H(+)-ATPase of fungi. Biochim Biophys Acta 1326(2):249–256. doi:S0005-2736(97)00028-X [pii]PubMedCrossRefGoogle Scholar
  159. Silva P, Geros H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726PubMedPubMedCentralCrossRefGoogle Scholar
  160. Smardon AM, Kane PM (2014) Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J Biol Chem 289(46):32316–32326. doi:M114.574442 [pii] 10.1074/jbc.M114.574442 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5(6):418–430. doi:nrmicro1680 [pii] 10.1038/nrmicro1680 PubMedCrossRefGoogle Scholar
  162. Stewart E, Hawser S, Gow NA (1989) Changes in internal and external pH accompanying growth of Candida albicans: studies of non-dimorphic variants. Arch Microbiol 151(2):149–153PubMedCrossRefGoogle Scholar
  163. Su Y, Zhou A, Al-Lamki RS, Karet FE (2003) The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 278(22):20013–20018. doi: 10.1074/jbc.M210077200M210077200 [pii]PubMedCrossRefGoogle Scholar
  164. Sumner JP, Dow JA, Earley FG, Klein U, Jager D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270(10):5649–5653PubMedCrossRefGoogle Scholar
  165. Sun-Wada G, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M (2000) Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228(2):315–325PubMedCrossRefGoogle Scholar
  166. Supply P, Wach A, Goffeau A (1993a) Enzymatic properties of the PMA2 plasma membrane-bound H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 268(26):19753–19759PubMedGoogle Scholar
  167. Supply P, Wach A, Thines-Sempoux D, Goffeau A (1993b) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. J Biol Chem 268(26):19744–19752PubMedGoogle Scholar
  168. Svergun DI, Konrad S, Huss M, Koch MH, Wieczorek H, Altendorf K, Volkov VV, Gruber G (1998) Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities. Biochemistry (Mosc) 37(51):17659–17663CrossRefGoogle Scholar
  169. Sychrova H, Ramirez J, Pena A (1999) Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett 171(2):167–172. doi:S0378-1097(98)00597-7 [pii]PubMedCrossRefGoogle Scholar
  170. Szopinska A, Degand H, Hochstenbach JF, Nader J, Morsomme P (2011) Rapid response of the yeast plasma membrane proteome to salt stress. Mol Cell Proteomics 10(11):M111.009589. doi:M111.009589 [pii] 10.1074/mcp.M111.009589
  171. Tabke K, Albertmelcher A, Vitavska O, Huss M, Schmitz HP, Wieczorek H (2014) Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions. Biochem J 462(1):185–197. doi:BJ20131293 [pii] 10.1042/BJ20131293 PubMedCrossRefGoogle Scholar
  172. Tarsio M, Zheng H, Smardon AM, Martinez-Munoz GA, Kane PM (2011) Consequences of loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular pH homeostasis. J Biol Chem 286(32):28089–28096. doi:M111.251363 [pii] 10.1074/jbc.M111.251363 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA, Gafken PR, Hsu JJ, Gottschling DE (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci U S A 111(39):14019–14026. doi:1416079111 [pii] 10.1073/pnas.1416079111 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405(6787):647–655PubMedCrossRefGoogle Scholar
  175. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299(5611):1400–1403PubMedCrossRefGoogle Scholar
  176. Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8377–8387. doi:AEM.02126-12 [pii] 10.1128/AEM.02126-12 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:324/5930/1029 [pii] 10.1126/science.1160809 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, Arino J (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279(42):43614–43624. Epub 42004 Aug 43606PubMedCrossRefGoogle Scholar
  179. Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O (2007) Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 282(46):33735–33742. doi:M703368200 [pii] 10.1074/jbc.M703368200 PubMedCrossRefGoogle Scholar
  180. Voss M, Blenau W, Walz B, Baumann O (2009) V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C. Arch Insect Biochem Physiol 71(3):130–138. doi: 10.1002/arch.20310 PubMedCrossRefGoogle Scholar
  181. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM (2015) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194. doi:science.1257132 [pii] 10.1126/science.1257132 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906PubMedCrossRefGoogle Scholar
  183. Xu W, Smith FJ Jr, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell 15(12):5528–5537. doi: 10.1091/mbc.E04-08-0666E04-08-0666 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yenush L, Mulet JM, Arino J, Serrano R (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21(5):920–929. doi: 10.1093/emboj/21.5.920 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yenush L, Merchan S, Holmes J, Serrano R (2005) pH-Responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Mol Cell Biol 25(19):8683–8692PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yokoyama K, Nagata K, Imamura H, Ohkuma S, Yoshida M, Tamakoshi M (2003) Subunit arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 278(43):42686–42691PubMedCrossRefGoogle Scholar
  187. Young BP, Shin JJ, Orij R, Chao JT, Li SC, Guan XL, Khong A, Jan E, Wenk MR, Prinz WA, Smits GJ, Loewen CJ (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329(5995):1085–1088. doi:329/5995/1085 [pii] 10.1126/science.1191026 PubMedCrossRefGoogle Scholar
  188. Zhang J, Myers M, Forgac M (1992) Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem 267(14):9773–9778PubMedGoogle Scholar
  189. Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJ, Kane PM, Wilkens S (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283(51):35983–35995PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6(6):e1000939. doi: 10.1371/journal.ppat.1000939 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science 334(6056):678–683. doi:334/6056/678 [pii] 10.1126/science.1207056 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations