Antifungals: Mechanism of Action and Drug Resistance

  • Rajendra PrasadEmail author
  • Abdul Haseeb Shah
  • Manpreet Kaur Rawal
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 892)


There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise.


Multidrug resistance Antifungal agents Azoles Combination therapy Drug efflux Erg11p 


  1. Balashov SV, Park S, Perlin DS (2006) Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother 50:2058–2063PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bills GF, Platas G, Overy DP, Collado J, Fillola A, Jiménez MR et al (2009) Discovery of the parnafungins, antifungal metabolites that inhibit mRNA polyadenylation, from the Fusarium larvarum complex and other Hypocrealean fungi. Mycologia 101:449–472PubMedCrossRefGoogle Scholar
  3. Bink A, Pellens K, Cammue BPA, Thevissen K (2011) Anti-Biofilm Strategies: how to Eradicate Candida Biofilms? Open Mycol J 5:29–38CrossRefGoogle Scholar
  4. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13Google Scholar
  5. Calabrese EC, Castellano S, Santoriello M, Sgherri C, Quartacci MF, Calucci L et al (2013) Antifungal activity of azole compounds CPA18 and CPA109 against azole-susceptible and -resistant strains of Candida albicans. J Antimicrob Chemother 68:1111–1119PubMedCrossRefGoogle Scholar
  6. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV et al (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321PubMedPubMedCentralCrossRefGoogle Scholar
  7. Capobianco JO, Zakula D, Coen ML, Goldman RC (1993) Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action. Biochem Biophys Res Commun 190:1037–1044PubMedCrossRefGoogle Scholar
  8. De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dean M, Andrey R, Rando A (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166PubMedCrossRefGoogle Scholar
  10. Decottignies A, Grant AM, Nichols JW, De Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622PubMedCrossRefGoogle Scholar
  11. Dhamgaye S, Devaux F, Manoharlal R, Vandeputte P, Shah AH, Singh A et al (2012) In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2. Antimicrob Agents Chemother 56:495–506PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dhamgaye S, Devaux F, Vandeputte P, Khandelwal NK, Sanglard D, Mukhopadhyay G et al (2014) Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One 9:e104554PubMedPubMedCentralCrossRefGoogle Scholar
  13. Domínguez JM, Martín JJ (1998) Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42:2279–2283PubMedPubMedCentralGoogle Scholar
  14. Domínguez JM, Kelly VA, Kinsman OS, Marriott MS, Gómez de las Heras F, Martín JJ (1998) Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42:2274–2278PubMedPubMedCentralGoogle Scholar
  15. Espinel-Ingroff A (2009) Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005–2009). Rev Iberoam Micol 26:15–22PubMedCrossRefGoogle Scholar
  16. Espinel-Ingroff A, Canton E, Martin-Mazuelos E, Pemán J (2009) Pharmacotherapy of Candida Infections with Echinocandins. Clin Med Ther 1:889–897Google Scholar
  17. Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE et al (2012) Gain-of function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell 11:1289–1299PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fostel JM, Lartey PA (2000) Emerging novel antifungal agents. Drug Discov Today 5:25–32Google Scholar
  19. Gallo-Ebert C, Donigan M, Stroke IL, Swanson RN, Manners MT, Francisco J et al (2014) Novel antifungal drug discovery based on targeting pathways regulating the fungus-conserved Upc2 transcription factor. Antimicrob Agents Chemother 58:258–266PubMedPubMedCentralCrossRefGoogle Scholar
  20. Garbati MA, Alasmari FA, Al-Tannir MA, Tleyjeh IM (2012) The role of combination antifungal therapy in the treatment of invasive aspergillosis: a systematic review. Int J Infect Dis 16:e76–e81PubMedCrossRefGoogle Scholar
  21. Garcia-Effron G, Park S, Perlin DS (2009) Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 53:112–122PubMedCrossRefGoogle Scholar
  22. Gaur M, Choudhury D, Prasad R (2005) Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. J Mol Microbiol Biotechnol 9:3–15PubMedCrossRefGoogle Scholar
  23. Gaur M, Puri N, Manoharlal R, Rai V, Mukhopadhayay G, Choudhury D et al (2008) MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics 9:579PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ghannoum MA, Spellberg BJ, Ibrahim AS, Ritchie JA, Currie B, Spitzer ED et al (1994) Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole. Antimicrob Agents Chemother 38:2029–2033PubMedPubMedCentralCrossRefGoogle Scholar
  25. Golin J, Ambudkar SV, May L (2007) The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? Biochem Biophys Res Commun 356:1–5PubMedCrossRefGoogle Scholar
  26. Gow NA, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:406–412PubMedCrossRefGoogle Scholar
  27. Gubbins PO, Anaissie E (2006) Overview of antifungal agents. Pharmacy practice news special edition 59–64Google Scholar
  28. Gunawardana G, Rasmussen RR, Scherr M, Frost D, Brandt KD, Choi W et al (1997) Corynecandin: a novel antifungal glycolipid from Coryneum modonium. J Antibiot (Tokyo) 50:884–886CrossRefGoogle Scholar
  29. Harris GH, Shafiee A, Cabello MA, Curotto JE, Genilloud O, Göklen KE et al (1998) Inhibition of fungal sphingolipid biosynthesis by rustmicin, galbonolide B and their new 21-hydroxy analogs. J Antibiot (Tokyo) 51:837–844CrossRefGoogle Scholar
  30. Heilmann CJ, Schneider S, Barker KS, Rogers PD, Morschhäuser J (2010) An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob Agents Chemother 54:353–359PubMedCrossRefGoogle Scholar
  31. Heitman J (2011) Microbial pathogens in the fungal kingdom. Fungal Biol Rev 25:48–60PubMedPubMedCentralCrossRefGoogle Scholar
  32. Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44:2693–2700PubMedPubMedCentralCrossRefGoogle Scholar
  33. Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D (1998) Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 42:2863–2869PubMedPubMedCentralGoogle Scholar
  34. Hodgetts S, Nooney L, Al-Akeel R, Curry A, Awad S, Matthews R et al (2008) Efungumab and caspofungin: pre-clinical data supporting synergy. J Antimicrob Chemother 61:1132–1139PubMedCrossRefGoogle Scholar
  35. Hoot SJ, Smith AR, Brown RP, White TC (2011) An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob Agents Chemother 55:940–942PubMedCrossRefGoogle Scholar
  36. Iwamoto T, Tsujii E, Ezaki M, Fujie A, Hashimoto S, Okuhara M et al (1990) FR109615, a new antifungal antibiotic from Streptomyces setonii. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 43:1–7CrossRefGoogle Scholar
  37. Jiang B, Xu D, Allocco J, Parish C, Davison J, Veillette K et al (2008) PAP inhibitor with in vivo efficacy identified by Candida albicans genetic profiling of natural products. Chem Biol 15:363–374PubMedCrossRefGoogle Scholar
  38. Jiménez-Ortigosa C, Paderu P, Motyl MR, Perlin DS (2014) Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida Species and Aspergillus species isolates. Antimicrob Agents Chemother 58:1248–1251PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kakeya H, Miyazaki Y, Senda H, Kobayashi T, Seki M, Izumikawa K et al (2008a) Efficacy of SPK-843, a novel polyene antifungal, in comparison with amphotericin B, liposomal amphotericin B, and micafungin against murine pulmonary aspergillosis. Antimicrob Agents Chemother 52:1868–1870PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kakeya H, Miyazaki Y, Senda H, Kobayashi T, Seki M, Izumikawa K et al (2008b) Efficacy of SPK-843, a novel polyene antifungal, in a murine model of systemic cryptococcosis. Antimicrob Agents Chemother 52:1871–1872PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H et al (1993) Mer-WF3010, a new member of the papulacandin family. I. Fermentation, isolation and characterization. J Antibiot (Tokyo) 46:247–250CrossRefGoogle Scholar
  42. Kantarcioglu AS, Yucel A, Vidotto V (2003) In vitro activity of a new polyene SPK-843 against Candida spp, Cryptococcus neoformans and Aspergillus spp. clinical isolates. J Chemother 15:296–298PubMedCrossRefGoogle Scholar
  43. Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079PubMedPubMedCentralCrossRefGoogle Scholar
  44. Katiyar SK, Edlind TD (2001) Identification and expression of multidrug resistance related ABC transporter genes in Candida krusei. Med Mycol 39:109–116PubMedCrossRefGoogle Scholar
  45. Kinsman OS, Chalk PA, Jackson HC, Middleton RF, Shuttleworth A, Rudd BA et al (1998) Isolation and characterisation of an antifungal antibiotic (GR135402) with protein synthesis inhibition. J Antibiot (Tokyo) 51:41–49CrossRefGoogle Scholar
  46. Kitamura A, Someya K, Hata M, Nakajima R, Takemura M (2009) Discovery of a small-molecule inhibitor of {beta}-1,6-glucan synthesis. Antimicrob Agents Chemother 53:670–677PubMedCrossRefGoogle Scholar
  47. Kohli A, Smirti, Mukhopadhyay K, Rattan A, Prasad R (2002) In vitro low-level resistance to azole in Candida albicans is associated with changes in membrane fluidity and asymmetry. Antimicrob Agents Chemother 46:1046–1052PubMedPubMedCentralCrossRefGoogle Scholar
  48. Konishi M, Nishio M, Saitoh K, Miyaki T, Oki T, Kawaguchi H (1989) Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo) 42:1749–1755CrossRefGoogle Scholar
  49. Kusch H, Biswas K, Schwanfelder S, Engelmann S, Rogers PD, Hecker M et al (2004) A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Mol Genet Genomics 271:554–565PubMedCrossRefGoogle Scholar
  50. Lamb DC, Maspahy S, Kelly DE, Manning NJ, Geber A, Bennett JE et al (1999) Purification, reconstitution, and inhibition of cytochrome P-450 sterol delta22-desaturase from the pathogenic fungus Candida glabrata. Antimicrob Agents Chemother 43:1725–1728PubMedPubMedCentralGoogle Scholar
  51. Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD (2010) Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genet Biol 47:127–142PubMedCrossRefGoogle Scholar
  52. Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162PubMedCrossRefGoogle Scholar
  53. Lewis RE, Kontoyiannis DP (2001) Rationale for combination antifungal therapy. Pharmacotherapy 21:149S–164SPubMedCrossRefGoogle Scholar
  54. Liu TT, Lee REB, Barker KS, Lee RE, Wei L, Homayouni R et al (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236PubMedPubMedCentralCrossRefGoogle Scholar
  55. López-Martínez R (2010) Candidosis, a new challenge. Clin Dermatol 28:178–184PubMedCrossRefGoogle Scholar
  56. Mandala SM, Thornton RA, Rosenbach M, Milligan J, Garcia-Calvo M, Bull HG et al (1997) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272:32709–32714PubMedCrossRefGoogle Scholar
  57. Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG et al (1998) Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J Biol Chem 273:14942–14949PubMedCrossRefGoogle Scholar
  58. Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE, Hedstrom L et al (2010) Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog 6(9):e1001126PubMedPubMedCentralCrossRefGoogle Scholar
  59. Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W et al (1999) Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–2713PubMedCrossRefGoogle Scholar
  60. Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG et al (2010) A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 54:3578–3583PubMedPubMedCentralCrossRefGoogle Scholar
  61. Miceli MH, Bernardo SM, Lee SA (2009) In vitro analyses of the combination of high-dose doxycycline and antifungal agents against Candida albicans biofilms. Int J Antimicrob Agents 34:326–332PubMedCrossRefGoogle Scholar
  62. Mitsuyama J, Nomura N, Hashimoto K, Yamada E, Nishikawa H, Kaeriyama M et al (2008) In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 52:1318–1324PubMedPubMedCentralCrossRefGoogle Scholar
  63. Miyazaki H, Miyazaki Y, Geber A, Parkinson T, Hitchcock C et al (1998) Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata. Antimicrob Agents Chemother 42:1695–1701PubMedPubMedCentralGoogle Scholar
  64. Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC (1998) Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42:1819–1830PubMedPubMedCentralGoogle Scholar
  65. Morio F, Loge C, Besse B, Hennequin C, Le Pape P (2010) Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66:373–384PubMedCrossRefGoogle Scholar
  66. Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ et al (2001) Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426PubMedCrossRefGoogle Scholar
  67. Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817PubMedCrossRefGoogle Scholar
  68. Nishi I, Sunada A, Toyokawa M, Asari S, Iwatani Y (2009) In vitro antifungal combination effects of micafungin with fluconazole, voriconazole, amphotericin B, and flucytosine against clinical isolates of Candida species. J Infect Chemother 15:1–5PubMedCrossRefGoogle Scholar
  69. Ogawa A, Hashida-Okado T, Endo M, Yoshioka H, Tsuruo T, Takesako K et al (1998) Role of ABC transporters in aureobasidin A resistance. Antimicrob Agents Chemother 42:755–761PubMedPubMedCentralCrossRefGoogle Scholar
  70. Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S et al (1998) BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 51:1081–1086CrossRefGoogle Scholar
  71. Olson JA, Adler-Moore JP, Smith PJ, Proffitt RT (2005) Treatment of Candida glabrata infection in immunosuppressed mice by using a combination of liposomal amphotericin B with caspofungin or micafungin. Antimicrob Agents Chemother 49:4895–4902PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pagant S, Halliday JJ, Kougentakis C, Miller EA (2010) Intragenic suppressing mutations correct the folding and intracellular traffic of misfolded mutants of Yor1p, a eukaryotic drug transporter. J Biol Chem 285:36304–36314PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pai MP, Samples ML, Mercier RC, Spilde MN (2008) Activities and ultrastructural effects of antifungal combinations against simulated Candida endocardial vegetations. Antimicrob Agents Chemother 52:2367–2376PubMedPubMedCentralCrossRefGoogle Scholar
  74. Parish CA, Smith SK, Calati K, Zink D, Wilson K, Roemer T et al (2008) Isolation and structure elucidation of parnafungins, antifungal natural products that inhibit mRNA polyadenylation. J Am Chem Soc 130:7060–7066PubMedCrossRefGoogle Scholar
  75. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E et al (2005) Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pasrija R, Banerjee D, Prasad R (2007) Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot Cell 6:443–453PubMedPubMedCentralCrossRefGoogle Scholar
  77. Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 10:121–130PubMedPubMedCentralCrossRefGoogle Scholar
  78. Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6:441–457PubMedPubMedCentralCrossRefGoogle Scholar
  79. Petraitis V, Petraitiene R, Kelaher AM, Sarafandi AA, Sein T, Mickiene D et al (2004) Efficacy of PLD-118, a novel inhibitor of candida isoleucyl-tRNA synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albicans. Antimicrob Agents Chemother 48:3959–3967PubMedPubMedCentralCrossRefGoogle Scholar
  80. Prasad R, Goffeau A (2012) Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu Rev Microbiol 66:39–63PubMedCrossRefGoogle Scholar
  81. Prasad R, Kapoor K (2005) Multidrug resistance in yeast Candida. Int Rev Cytol 242:215–248PubMedCrossRefGoogle Scholar
  82. Prasad R, DeWergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329PubMedCrossRefGoogle Scholar
  83. Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK, Goswami SK et al (2010) Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS Yeast Res 10:587–596PubMedGoogle Scholar
  84. Rodrigues ME, Silva S, Azeredo J, Henriques M (2014) Novel strategies to fight Candida species infection. Crit Rev Microbiol 10:1–13CrossRefGoogle Scholar
  85. Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4 pii:a019703Google Scholar
  86. Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WHM, Huang SC et al (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279PubMedGoogle Scholar
  87. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J (1999) The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765PubMedPubMedCentralGoogle Scholar
  88. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J (2003) Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9:1029–1050PubMedCrossRefGoogle Scholar
  90. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R et al (2006) Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun 74:1352–1359PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sasse C, Schillig R, Reimund A, Merk J, Morschhäuser J (2012) Inducible and constitutive activation of two polymorphic promoter alleles of the Candida albicans multidrug efflux pump MDR1. Antimicrob Agents Chemother 56:4490–4494PubMedPubMedCentralCrossRefGoogle Scholar
  92. Serena C, Fernández-Torres B, Pastor FJ, Trilles L, Lazéra Mdos S, Nolard N et al (2005) In vitro interactions of micafungin with other antifungal drugs against clinical isolates of four species of Cryptococcus. Antimicrob Agents Chemother 49:2994–2996PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sharma M, Manoharlal R, Shukla S, Puri N, Prasad T, Ambudkar SV et al (2009) Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob Agents Chemother 53:3256–3265PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sharma M, Manoharlal R, Puri N, Prasad R (2010) Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep 30:391–404PubMedCrossRefGoogle Scholar
  96. Shi W, Chen Z, Chen X, Cao L, Liu P, Sun S (2010) The combination of minocycline and fluconazole causes synergistic growth inhibition against Candida albicans: an in vitro interaction of antifungal and antibacterial agents. FEMS Yeast Res 10:885–893PubMedCrossRefGoogle Scholar
  97. Shibata T, Takahashi T, Yamada E, Kimura A, Nishikawa H, Hayakawa H et al (2012) T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 56:5892–5897PubMedPubMedCentralCrossRefGoogle Scholar
  98. St Georgiev V (2000) Membrane transporters and antifungal drug resistance. Curr Drug Targets 1:261–284PubMedCrossRefGoogle Scholar
  99. Stephanie SP, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34Google Scholar
  100. Thornewell SJ, Peery RB, Skatrud PL (1997) Cloning and characterization of CneMDR1: a Cryptococcus neoformans gene encoding a protein related to multidrug resistance proteins. Gene 201:21–29PubMedCrossRefGoogle Scholar
  101. Tobudic S, Kratzer C, Lassnigg A, Graninger W, Presterl E (2010a) In vitro activity of antifungal combinations against Candida albicans biofilms. J Antimicrob Chemother 65:271–274PubMedCrossRefGoogle Scholar
  102. Tobudic S, Lassnigg A, Kratzer C, Graninger W, Presterl E (2010b) Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses 53:208–214PubMedCrossRefGoogle Scholar
  103. Torelli R, Posteraro B, Ferrari S, La Sorda M, Fadda G, Sanglard D et al (2008) The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol 68:186–201PubMedCrossRefGoogle Scholar
  104. Uppuluri P, Nett J, Heitman J, Andes D (2008) Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vanden Bossche H, Marichal P, Le Jeune L, Coene MC, Gorrens J, Cools W (1993) Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob Agents Chemother 37:2101–2105PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vandeputte P, Tronchin G, Berge`s T, Hennequin C, Chabasse D, Bouchara JP (2007) Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob Agents Chemother 51:982–990PubMedCrossRefGoogle Scholar
  107. Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687PubMedCrossRefGoogle Scholar
  108. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M et al (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159PubMedCrossRefGoogle Scholar
  109. Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N et al (2009) Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol 14:167CrossRefGoogle Scholar
  110. White TC, Silver PM (2005) Regulation of sterol metabolism in Candida albicans by the UPC2 gene. Biochem Soc Trans 33:1215–1218PubMedCrossRefGoogle Scholar
  111. White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedPubMedCentralGoogle Scholar
  112. White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wiederhold NP, Najvar LK, Fothergill AW, Bocanegra R, Olivo M, McCarthy DI et al (2015) The Novel Arylamidine T-2307 Maintains In Vitro and In Vivo Activity against Echinocandin-Resistant Candida albicans. Antimicrob Agents Chemother 59:1341–1343PubMedPubMedCentralCrossRefGoogle Scholar
  114. Young LY, Hull CM, Heitman J (2003) Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 47:2717–2724PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6:e1000939PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rajendra Prasad
    • 1
    • 2
    Email author
  • Abdul Haseeb Shah
    • 1
  • Manpreet Kaur Rawal
    • 1
  1. 1.Membrane Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.AMITY Institute of Integrative Sciences and Health (AIISH)Amity University HaryanaManesar, GurgaonIndia

Personalised recommendations