Transport Systems in Halophilic Fungi

  • Ana PlemenitašEmail author
  • Tilen Konte
  • Cene Gostinčar
  • Nina Gunde Cimerman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 892)


Fungi that tolerate very high environmental NaCl concentrations are good model systems to study mechanisms that enable them to endure osmotic and salinity stress. The whole genome sequences of six such fungal species have been analysed: Hortaea werneckii, Wallemia ichthyophaga and four Aureobasidium spp.: A. pullulans, A. subglaciale, A. melanogenum and A. namibiae. These fungi show different levels of halotolerance, with the presence of numerous membrane transport systems uncovered here that are believed to maintain physiological intracellular concentrations of alkali metal cations. Despite some differences, the intracellular cation contents of H. werneckii, A. pullulans and W. ichthyophaga remain low even under extreme extracellular salinities, which suggests that these species have efficient cation transport systems. We speculate that cation transporters prevent intracellular accumulation of Na+, and thus avoid the toxic effects that such Na+ accumulation would have, while also maintaining the high K+/Na+ ratio that is required for the full functioning of the cell – another crucial task in high-Na+ environments. This chapter primarily summarises the cation transport systems of these selected fungi, and it also describes other membrane transporters that might be involved in their mechanisms of halotolerance.


Extremely halotolerant H. werneckii Halotolerant Aurobasidium spp. Halophilic W. ichthyophaga Cation transporters Mechanisms of halotolerance 


  1. Alleva K, Chara O, Amodeo G (2012) Aquaporins: another piece in the osmotic puzzle. FEBS Lett 586(19):2991–2999. doi: 10.1016/j.febslet.2012.06.013 CrossRefPubMedGoogle Scholar
  2. Ambesi A, Miranda M, Petrov VV, Slayman CW (2000) Biogenesis and function of the yeast plasma-membrane H+-ATPase. J Exp Biol 203(1):155–160PubMedGoogle Scholar
  3. Andrews JH, Spear RN, Nordheim EV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48(6):500–513CrossRefPubMedGoogle Scholar
  4. Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1):95–120. doi: 10.1128/MMBR.00042-09 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144:2749–2758CrossRefPubMedGoogle Scholar
  6. Benito B, Garciadeblas B, Rodriguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148:933–941CrossRefPubMedGoogle Scholar
  7. Benito B, Garciadeblas B, Schreier P, Rodriguez-Navarro A (2004) Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3(2):359–368. doi: 10.1128/Ec.3.2.359-368.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Benito B, Garciadeblas B, Fraile-Escanciano A, Rodriguez-Navarro A (2011) Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genet Biol 48(8):812–822. doi: 10.1016/j.fgb.2011.03.002 CrossRefPubMedGoogle Scholar
  9. Borgnia MJ, Agre P (2001) Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A 98(5):2888–2893. doi: 10.1073/pnas.051628098 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458. doi: 10.1146/annurev.biochem.68.1.425 CrossRefPubMedGoogle Scholar
  11. Cagnac O, Leterrier M, Yeager M, Blumwald E (2007) Identification and characterization of Vnx1p, a novel type of vacuolar monovalent Cation/H+ antiporter of Saccharomyces cerevisiae. J Biol Chem 282(33):24284–24293. doi: 10.1074/jbc.M703116200 CrossRefPubMedGoogle Scholar
  12. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868CrossRefPubMedGoogle Scholar
  13. Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236(2–3):363–368CrossRefPubMedGoogle Scholar
  14. Gorjan A, Plemenitas A (2006) Identification and characterization of ENA ATPases HwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 265(1):41–50. doi: 10.1111/j.1574-6968.2006.00473.x CrossRefPubMedGoogle Scholar
  15. Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71(1):2–11. doi: 10.1111/j.1574-6941.2009.00794.x CrossRefPubMedGoogle Scholar
  16. Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitas A (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–96. doi: 10.1016/B978-0-12-387044-5.00003-0 CrossRefPubMedGoogle Scholar
  17. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549. doi: 10.1186/1471-2164-15-549 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Graham LA, Powell B, Stevens TH (2000) Composition and assembly of the yeast vacuolar H(+)-ATPase complex. J Exp Biol 203(Pt 1):61–70PubMedGoogle Scholar
  19. Grube M, Schmid F, Berg G (2011) Black fungi and associated bacterial communities in the phyllosphere of grapevine. Fungal Biol 115(10):978–986. doi: 10.1016/j.funbio.2011.04.004 CrossRefPubMedGoogle Scholar
  20. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240Google Scholar
  21. Gunde-Cimerman N, Zalar P, Petrovič U, Turk M, Kogej T, De Hoog GS, Plemenitaš A (2004) Fungi in the salterns. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, pp 103–111CrossRefGoogle Scholar
  22. Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113(Pt 11):1231–1241. doi: 10.1016/j.mycres.2009.09.002 CrossRefPubMedGoogle Scholar
  23. Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium-transport. FEBS Lett 291(2):189–191. doi: 10.1016/0014-5793(91)81280-L CrossRefPubMedGoogle Scholar
  24. Hohmann S, Bill RM, Kayingo G, Prior BA (2000) Microbial MIP channels. Trends Microbiol 8(1):33–38. doi: 10.1016/S0966-842x(99)01645-5 CrossRefPubMedGoogle Scholar
  25. Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast Tfp1 gene-product to the 69-Kd subunit of the vacuolar H+-adenosine triphosphatase. Science 250(4981):651–657. doi: 10.1126/science.2146742 CrossRefPubMedGoogle Scholar
  26. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376(6542):690–695. doi: 10.1038/376690a0 CrossRefPubMedGoogle Scholar
  27. Kinclova O, Poitier S, Sychrova H (2001) The Zygosaccharomyces rouxii strain CBS732 contains only one copy of the HOG1 and the SOD2 genes. J Biotechnol 88(2):151–158CrossRefPubMedGoogle Scholar
  28. Kinclova-Zimmermannova O, Gaskova D, Sychrova H (2006) The Na+, K+/H+ -antiporter Nha1 influences the plasma membrane potential of Saccharomyces crevisiae. FEMS Yeast Res 6(5):792–800. doi: 10.1111/j.1567-1364.2006.00062.x CrossRefPubMedGoogle Scholar
  29. Ko CH, Gaber RF (1991) Trk1 and Trk2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11(8):4266–4273CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71(11):6600–6605. doi: 10.1128/aem.71.11.6600-6605.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kralj Kunčič M, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76(1):329–337. doi: 10.1128/AEM.02318-09 CrossRefPubMedGoogle Scholar
  32. Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5(4):282–295. doi: 10.1038/nrm1354 CrossRefPubMedGoogle Scholar
  33. Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9(4):511–525. doi: 10.1111/j.1567-1364.2009.00509.x CrossRefPubMedGoogle Scholar
  34. Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitas A (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS ONE 8(8):e71328. doi: 10.1371/journal.pone.0071328 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Marchi V, Sorin A, Wei Y, Rao R (1999) Induction of vacuolar Ca2+-ATPase and H+/Ca2+ exchange activity in yeast mutants lacking Pmr1, the Golgi Ca2+-ATPase. FEBS Lett 454(3):181–186CrossRefPubMedGoogle Scholar
  36. Maresova L, Sychrova H (2005) Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 55(2):588–600. doi: 10.1111/j.1365-2958.2004.04410.x CrossRefPubMedGoogle Scholar
  37. Mendoza I, Rubio F, Rodrigueznavarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269(12):8792–8796PubMedGoogle Scholar
  38. Nass R, Rao R (1999) The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145:3221–3228CrossRefPubMedGoogle Scholar
  39. Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279(29):30307–30315. doi: 10.1074/jbc.M403607200 CrossRefPubMedGoogle Scholar
  40. Olstorpe M, Axelsson L, Schnurer J, Passoth V (2010) Effect of starter culture inoculation on feed hygiene and microbial population development in fermented pig feed composed of a cereal grain mix with wet wheat distillers’ grain. J Appl Microbiol 108(1):129–138. doi: 10.1111/j.1365-2672.2009.04399.x CrossRefPubMedGoogle Scholar
  41. Padamsee M, Kumar TK, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49(3):217–226. doi: 10.1016/j.fgb.2012.01.007 CrossRefPubMedGoogle Scholar
  42. Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim Biophys Acta 1365(1–2):37–45CrossRefPubMedGoogle Scholar
  43. Plemenitas A, Lenassi M, Konte T, Kejzar A, Zajc J, Gostinčar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199. doi: 10.3389/fmicb.2014.00199 PubMedPubMedCentralGoogle Scholar
  44. Prior C, Potier S, Souciet JL, Sychrova H (1996) Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387(1):89–93. doi: 10.1016/0014-5793(96)00470-X CrossRefPubMedGoogle Scholar
  45. Ramos J, Arino J, Sychrova H (2011) Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 317(1):1–8. doi: 10.1111/j.1574-6968.2011.02214.x CrossRefPubMedGoogle Scholar
  46. Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta Rev Biomembr 1469(1):1–30. doi: 10.1016/S0304-4157(99)00013-1 CrossRefGoogle Scholar
  47. Schlesser A, Ulaszewski S, Ghislain M, Goffeau A (1988) A second transport ATPase gene in Saccharomyces cerevisiae. J Biol Chem 263(36):19480–19487PubMedGoogle Scholar
  48. Serrano R, Kiellandbrandt MC, Fink GR (1986) Yeast plasma-membrane ATPase is essential for growth and has homology with (Na++K+), K+- and Ca2+-ATPases. Nature 319(6055):689–693. doi: 10.1038/319689a0 CrossRefPubMedGoogle Scholar
  49. Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46(5):1319–1333. doi: 10.1046/j.1365-2958.2002.03246.x CrossRefPubMedGoogle Scholar
  50. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669. doi: 10.1111/j.1399-3054.2007.01008.x CrossRefPubMedGoogle Scholar
  51. Simon E, Clotet J, Calero F, Ramos J, Arino J (2001) A screening for high copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J Biol Chem 276(32):29740–29747. doi: 10.1074/jbc.M101992200 CrossRefPubMedGoogle Scholar
  52. Vashist S, Frank CG, Jakob CA, Ng DT (2002) Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol Biol Cell 13(11):3955–3966. doi: 10.1091/mbc.02-06-0090 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Vaupotic T, Plemenitas A (2007) Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280. doi: 10.1186/1471-2164-8-280 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Waschuk SA, Bezerra AG Jr, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci U S A 102(19):6879–6883. doi: 10.1073/pnas.0409659102 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK (1995) The Pmr2 gene-cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma-membrane. EMBO J 14(16):3870–3882PubMedPubMedCentralGoogle Scholar
  56. Xu H, Cooke JEK, Zwiazek JJ (2013) Phylogenetic analysis of fungal aquaporins provides insight into their possible role in water transport of mycorrhizal associations. Botany-Botanique 91(8):495–504. doi: 10.1139/cjb-2013-0041 CrossRefGoogle Scholar
  57. Yale J, Bohnert HJ (2001) Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 276(19):15996–16007. doi: 10.1074/jbc.M008209200 CrossRefPubMedGoogle Scholar
  58. Yan A, Hu X, Wang K, Sun J (2013) Discriminating of ATP competitive Src kinase inhibitors and decoys using self-organizing map and support vector machine. Mol Divers 17(1):75–83. doi: 10.1007/s11030-012-9411-0 CrossRefPubMedGoogle Scholar
  59. Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14(1):617. doi: 10.1186/1471-2164-14-617 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80(1):247–256. doi: 10.1128/AEM.02702-13 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zalar P, Gostinčar C, de Hoog GS, Ursic V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38. doi: 10.3114/sim.2008.61.02 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zotova L, Aleschko M, Sponder G, Baumgartner R, Reipert S, Prinz M, Schweyen RJ, Nowikovsky K (2010) Novel components of an active mitochondrial K+/H+ exchange. J Biol Chem 285(19):14399–14414. doi: 10.1074/jbc.M109.059956 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana Plemenitaš
    • 1
    Email author
  • Tilen Konte
    • 1
  • Cene Gostinčar
    • 2
  • Nina Gunde Cimerman
    • 3
    • 4
  1. 1.Institute of Biochemistry, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  2. 2.National Institute of BiologyLjubljanaSlovenia
  3. 3.Biology Department, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP)LjubljanaSlovenia

Personalised recommendations