Advertisement

Magnetic Solitons in Superlattices

  • Amalio Fernández-Pacheco
  • Rhodri Mansell
  • JiHyun Lee
  • Dishant Mahendru
  • Alexander Welbourne
  • Shin-Liang Chin
  • Reinoud Lavrijsen
  • Dorothee Petit
  • Russell P. Cowburn
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 228)

Abstract

Magnetic solitons in antiferromagnetic superlattices can be used for vertical data transfer of information. In this chapter, we introduce this concept and summarise recent results of our group where controlled soliton nucleation and propagation was achieved.

Keywords

Domain Wall Bottom Layer Ferromagnetic Layer Edge Layer Soliton Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

A. Fernández-Pacheco acknowledges support by EPSRC and Winton Program for the Physics of Sustainability. R. Lavrijsen acknowledges support from the Netherlands Organization for Scientific Research and Marie Curie Cofund Action. We acknowledge research funding from the European Community under the Seventh Framework Programme Contracts No. 247368: 3SPIN and No. 309589: M3d.

References

  1. 1.
    T. Hesjedal, T. Phung, Magnetic logic element based on an S-shaped Permalloy structure. Appl. Phys. Lett. 96, 072501 (2010)Google Scholar
  2. 2.
    D.A. Allwood, Characterization of submicrometer ferromagnetic NOT gates. J. Appl. Phys. 95, 8264 (2004)Google Scholar
  3. 3.
    L. O’Brien et al., Bidirectional magnetic nanowire shift register. Appl. Phys. Lett. 95, 232502 (2009)Google Scholar
  4. 4.
    D.A. Allwood et al., Magnetic domain-wall logic. Science 309, 1688–1692 (2005)Google Scholar
  5. 5.
    J.H. Franken, H.J.M. Swagten, B. Koopmans, Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat. Nanotechnol. 7, 499–503 (2012)Google Scholar
  6. 6.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)Google Scholar
  7. 7.
    M. Hayashi, L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008)Google Scholar
  8. 8.
    M.A. Basith, S. McVitie, D. McGrouther, J.N. Chapman, J.M.R. Weaver, Direct comparison of domain wall behavior in permalloy nanowires patterned by electron beam lithography and focused ion beam milling. J. Appl. Phys. 110, 083904 (2011)Google Scholar
  9. 9.
    J. Garcia, A. Thiaville, J. Miltat, MFM imaging of nanowires and elongated patterned elements. J. Magn. Magn. Mater. 249, 163–169 (2002)Google Scholar
  10. 10.
    Y. Jang, S.R. Bowden, M. Mascaro, J. Unguris, C.A. Ross, Formation and structure of 360 and 540 degree domain walls in thin magnetic stripes. Appl. Phys. Lett. 100, 062407 (2012)Google Scholar
  11. 11.
    M. Laufenberg et al., Observation of thermally activated domain wall transformations. Appl. Phys. Lett. 88, 052507 (2006)Google Scholar
  12. 12.
    M. Klaäui et al., Head-to-head domain-wall phase diagram in mesoscopic ring magnets. Appl. Phys. Lett. 85, 5637 (2004)Google Scholar
  13. 13.
    M. Kläui, Head-to-head domain walls in magnetic nanostructures. J. Phys. Condens. Matter 20, 313001 (2008)CrossRefADSGoogle Scholar
  14. 14.
    P. Roy et al., Antivortex domain walls observed in permalloy rings via magnetic force microscopy. Phys. Rev. B 79, 060407 (2009)Google Scholar
  15. 15.
    D. Petit et al., Magnetic imaging of the pinning mechanism of asymmetric transverse domain walls in ferromagnetic nanowires. Appl. Phys. Lett. 97, 233102 (2010)CrossRefADSGoogle Scholar
  16. 16.
    R.P. Cowburn, D.A. Allwood, G. Xiong, M.D. Cooke, Domain wall injection and propagation in planar Permalloy nanowires. J. Appl. Phys. 91, 6949 (2002)Google Scholar
  17. 17.
    T. Ono, Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 80(284), 468–470 (1999)Google Scholar
  18. 18.
    K. Shigeto, T. Shinjo, T. Ono, Injection of a magnetic domain wall into a submicron magnetic wire. Appl. Phys. Lett. 75, 2815 (1999)CrossRefADSGoogle Scholar
  19. 19.
    J. Akerman, M. Muñoz, M. Maicas, J.L. Prieto, Stochastic nature of the domain wall depinning in permalloy magnetic nanowires. Phys. Rev. B 82, 064426 (2010)CrossRefADSGoogle Scholar
  20. 20.
    M.T. Bryan, D. Atkinson, D.A. Allwood, Multimode switching induced by a transverse field in planar magnetic nanowires. Appl. Phys. Lett. 88, 032505 (2006)Google Scholar
  21. 21.
    M.-Y. Im, L. Bocklage, P. Fischer, G. Meier, Direct observation of stochastic domain-wall depinning in magnetic nanowires. Phys. Rev. Lett. 102, 147204 (2009)Google Scholar
  22. 22.
    M.-Y. Im, L. Bocklage, G. Meier, P. Fischer, Magnetic soft X-ray microscopy of the domain wall depinning process in permalloy magnetic nanowires. J. Phys. Condens. Matter 24, 024203 (2012)Google Scholar
  23. 23.
    D. Petit, A.-V. Jausovec, D. Read, R.P. Cowburn, Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J. Appl. Phys. 103, 114307 (2008)CrossRefADSGoogle Scholar
  24. 24.
    A. Beguivin, L.A. O’Brien, A.V. Jausovec, D. Petit, R.P. Cowburn, Magnetisation reversal in permalloy nanowires controlled by near-field charge interactions. Appl. Phys. Lett. 99, 142506 (2011)Google Scholar
  25. 25.
    T.J. Hayward et al., Pinning induced by inter-domain wall interactions in planar magnetic nanowires. Appl. Phys. Lett. 96, 052502 (2010)CrossRefADSGoogle Scholar
  26. 26.
    L. O’Brien et al., Tunable remote pinning of domain walls in magnetic nanowires. Phys. Rev. Lett. 106, 087204 (2011)Google Scholar
  27. 27.
    L. O’Brien et al., Near-field interaction between domain walls in adjacent permalloy nanowires. Phys. Rev. Lett. 103, 077206 (2009)Google Scholar
  28. 28.
    Y. Nakatani, A. Thiaville, J. Miltat, Head-to-head domain walls in soft nano-strips: a refined phase diagram. J. Magn. Magn. Mater. 290–291, 750–753 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Eltschka et al., Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics. Phys. Rev. Lett. 105, 056601 (2010)Google Scholar
  30. 30.
    M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat. Phys. 3, 21–25 (2006)CrossRefGoogle Scholar
  31. 31.
    S. Lepadatu et al., Domain-wall spin-torque resonators for frequency-selective operation. Phys. Rev. B 81, 060402 (2010)CrossRefADSGoogle Scholar
  32. 32.
    G.S.D. Beach, M. Tsoi, J.L. Erskine, Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008)CrossRefADSGoogle Scholar
  33. 33.
    M. Donolato et al., On-chip manipulation of protein-coated magnetic beads via domain-wall conduits. Adv. Mater. 22, 2706–2710 (2010)Google Scholar
  34. 34.
    A. Beguivin et al., Simultaneous magnetoresistance and magneto-optical measurements of domain wall properties in nanodevices. J. Appl. Phys. 115, 17C718 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Mattheis, S. Glathe, M. Diegel, U. Hübner, Concepts and steps for the realization of a new domain wall based giant magnetoresistance nanowire device: from the available 24 multiturn counter to a 212 turn counter. J. Appl. Phys. 111, 113920 (2012)Google Scholar
  36. 36.
    Patent-Cowburn-US20070047156.pdfGoogle Scholar
  37. 37.
    A. Fernández-Pacheco et al., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1492 (2013)CrossRefADSGoogle Scholar
  38. 38.
  39. 39.
    S. Parkin, Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys. Rev. Lett. 67, 3598–3601 (1991)CrossRefADSGoogle Scholar
  40. 40.
    E.L. Starostin, G.H.M. van der Heijden, The shape of a Möbius strip. Nat. Mater. 6, 563–567 (2007)Google Scholar
  41. 41.
    D. Mills, Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968)Google Scholar
  42. 42.
    D. Mills, W. Saslow, Surface effects in the Heisenberg antiferromagnet. Phys. Rev. 171, 488–506 (1968)Google Scholar
  43. 43.
    D. Elefant, R. Schäfer, J. Thomas, H. Vinzelberg, C. Schneider, Competition of spin-flip and spin-flop dominated processes in magnetic multilayers: magnetization reversal, magnetotransport, and domain structure in the NiFe/Cu system. Phys. Rev. B 77, 014426 (2008)Google Scholar
  44. 44.
    J. Meersschaut et al., Hard-axis magnetization behavior and the surface spin-flop transition in antiferromagnetic Fe/Cr(100) superlattices. Phys. Rev. B 73, 144428 (2006)CrossRefADSGoogle Scholar
  45. 45.
    C. Micheletti, R. Griffiths, J. Yeomans, Surface spin-flop and discommensuration transitions in antiferromagnets. Phys. Rev. B 59, 6239–6249 (1999)CrossRefADSGoogle Scholar
  46. 46.
    S. Te Velthuis, J. Jiang, S. Bader, G. Felcher, Spin flop transition in a finite antiferromagnetic superlattice: evolution of the magnetic structure. Phys. Rev. Lett. 89, 127203 (2002)Google Scholar
  47. 47.
    U.K. Rößler, A.N. Bogdanov, Magnetic phase diagrams for models of synthetic antiferromagnets. J. Appl. Phys. 101, 09D105 (2007)Google Scholar
  48. 48.
    U. Rößler, A. Bogdanov, Magnetic states and reorientation transitions in antiferromagnetic superlattices. Phys. Rev. B 69, 094405 (2004)Google Scholar
  49. 49.
    J.-P. Nguenang, A.J. Kenfack, T.C. Kofané, Soliton-like excitations in a deformable spin model. J. Phys. Condens. Matter 16, 373–403 (2004)CrossRefADSGoogle Scholar
  50. 50.
    M.G. Pini et al., Surface spin-flop transition in a uniaxial antiferromagnetic Fe/Cr superlattice induced by a magnetic field of arbitrary direction. J. Phys. Condens. Matter 19, 136001 (2007)CrossRefADSGoogle Scholar
  51. 51.
    R. Wang, D. Mills, E. Fullerton, J. Mattson, S. Bader, Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory. Phys. Rev. Lett. 72, 920–923 (1994)CrossRefADSGoogle Scholar
  52. 52.
    S. Rakhmanova, D. Mills, E. Fullerton, Low-frequency dynamic response and hysteresis in magnetic superlattices. Phys. Rev. B 57, 476–484 (1998)CrossRefADSGoogle Scholar
  53. 53.
    R. Lavrijsen et al., Magnetism in Co[sub 80-x]Fe[sub x]B[sub 20]: effect of crystallization. J. Appl. Phys. 109, 093905 (2011)Google Scholar
  54. 54.
    E. Fullerton, M. Conover, J. Mattson, C. Sowers, S. Bader, Oscillatory interlayer coupling and giant magnetoresistance in epitaxial Fe/Cr(211) and (100) superlattices. Phys. Rev. B 48, 15755–15763 (1993)CrossRefADSGoogle Scholar
  55. 55.
    A. Fernández-Pacheco et al., Controllable nucleation and propagation of topological magnetic solitons in CoFeB/Ru ferrimagnetic superlattices. Phys. Rev. B—Condens. Matter Mater. Phys. 86, (2012)Google Scholar
  56. 56.
    B. Dieny, J.P. Gavigan, J.P. Rebouillat, Magnetisation processes, hysteresis and finite-size effects in model multilayer systems of cubic or uniaxial anisotropy with antiferromagnetic coupling between adjacent ferromagnetic layers. J. Phys. Condens. Matter 2, 159–185 (1990)CrossRefADSGoogle Scholar
  57. 57.
    A. Fernández-Pacheco, No Title. to be Publ. Google Scholar
  58. 58.
    E.Y. Vedmedenko, D. Altwein, Topologically protected magnetic helix for all-spin-based applications. Phys. Rev. Lett. 112, 017206 (2014)Google Scholar
  59. 59.
    D. Petit, R. Mansell, A. Fernández-Pacheco, J.H. Lee, R.P. Cowburn, in VLSI: Circuits for Emerging Applications, ed. by T. Wojcicki (CRC Press, Boca Raton, 2014)Google Scholar
  60. 60.
    R. Lavrijsen et al., Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013)Google Scholar
  61. 61.
    J.H. Lee et al., Soliton propagation in micron-sized magnetic ratchet elements. Appl. Phys. Lett. 104, 232404 (2014)CrossRefADSGoogle Scholar
  62. 62.
    J.-H. Lee et al., Domain imaging during soliton propagation in a 3D magnetic ratchet. SPIN 03, 1340013 (2013)Google Scholar
  63. 63.
    R. Lavrijsen et al., Multi-bit operations in vertical spintronic shift registers. Nanotechnology 25, 105201 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amalio Fernández-Pacheco
    • 1
  • Rhodri Mansell
    • 1
  • JiHyun Lee
    • 1
  • Dishant Mahendru
    • 1
  • Alexander Welbourne
    • 1
  • Shin-Liang Chin
    • 1
  • Reinoud Lavrijsen
    • 1
    • 2
  • Dorothee Petit
    • 1
  • Russell P. Cowburn
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Department of Applied Physics, Center for NanoMaterialsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations