Advertisement

How is Life for a Table in an Evolving Relational Schema? Birth, Death and Everything in Between

  • Panos VassiliadisEmail author
  • Apostolos V. Zarras
  • Ioannis Skoulis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9381)

Abstract

In this paper, we study the version history of eight databases that are part of larger open source projects, and report on our observations on how evolution-related properties, like the possibility of deletion, or the amount of updates that a table undergoes, are related to observable table properties like the number of attributes or the time of birth of a table. Our findings indicate that (i) most tables live quiet lives; (ii) few top-changers adhere to a profile of long duration, early birth, medium schema size at birth; (iii) tables with large schemata or long duration are quite unlikely to be removed, and, (iv) early periods of the database life demonstrate a higher level of evolutionary activity compared to later ones.

Keywords

Schema evolution Patterns of change Design for evolution 

Notes

Acknowledgments

This work was partially supported from the European Community’s FP7/2007-2013 under grant agreement number 257178 (project CHOReOS). We would like to thank the reviewers of the paper for helpful comments and suggestions for solidifying our work.

References

  1. 1.
    Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution in wikipedia: toward a web information system benchmark. In: Proceedings of ICEIS 2008. Citeseer (2008)Google Scholar
  2. 2.
    Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema evolution process. VLDB J. 22(1), 73–98 (2013)CrossRefGoogle Scholar
  3. 3.
    Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice-Hall (2002)Google Scholar
  4. 4.
    Hartung, M., Terwilliger, J.F., Rahm, E.: Recent Advances in Schema and Ontology Evolution. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping, pp. 149–190. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Lin, D.Y., Neamtiu, I.: Collateral evolution of applications and databases. In: Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops, IWPSE-Evol 2009, pp. 31–40 (2009)Google Scholar
  6. 6.
    Manousis, P., Vassiliadis, P., Papastefanatos, G.: Automating the adaptation of evolving data-intensive ecosystems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 182–196. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and code in database applications. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 125–135, ESEC/FSE 2013 (2013)Google Scholar
  8. 8.
    Sjøberg, D.: Quantifying schema evolution. Inf. Softw. Technol. 35(1), 35–44 (1993)CrossRefGoogle Scholar
  9. 9.
    Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside, or beyond Lehman’s laws of software evolution? In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 379–393. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Wu, S., Neamtiu, I.: Schema evolution analysis for embedded databases. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering Workshops, ICDEW 2011, pp. 151–156 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Panos Vassiliadis
    • 1
    Email author
  • Apostolos V. Zarras
    • 1
  • Ioannis Skoulis
    • 2
  1. 1.Department of Computer Science and EngineeringUniversity of IoanninaIoanninaGreece
  2. 2.Opera SoftwareOsloNorway

Personalised recommendations