A Randomized Algorithm for Online Scheduling with Interval Conflicts

  • Marcin Bienkowski
  • Artur Kraska
  • Paweł Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9439)


In the contiguous variant of the Scheduling with Interval Conflicts problem, there is a universe \(\mathcal{U}\) consisting of elements being consecutive positive integers. An input is a sequence of conflicts in the form of intervals of length at most σ. For each conflict, an algorithm has to choose at most one surviving element, with the ultimate goal of maximizing the number of elements that survived all conflicts. We present an O(logσ/ loglogσ)-competitive randomized algorithm for this problem, beating known lower bound of Ω(logσ) that holds for deterministic algorithms.


online algorithms competitive analysis interval conflicts online scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call control. In: Proc. of the 5th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 312–320 (1994)Google Scholar
  2. 2.
    Bachmann, U.T., Halldórsson, M.M., Shachnai, H.: Online selection of intervals and t-intervals. Information and Computation 233, 1–11 (2013); Also appeared in Proc. of the 12th SWAT, pp. 383–394 (2010)Google Scholar
  3. 3.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  4. 4.
    Chrobak, M.: Online aggregation problems. SIGACT News 45(1), 91–102 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J., Rawitz, D.: Online set packing. SIAM Journal on Computing 41(4), 728–746 (2012); Also appeared as Online set packing and competitive scheduling of multi-part tasks. In: Proc. of the 29th PODC, pp. 440–449 (2010)Google Scholar
  6. 6.
    Garay, J.A., Gopal, I.S.: Call preemption in communication networks. In: Proc. of the 11th IEEE Int. Conference on Computer Communications (INFOCOM), pp. 1043–1050 (1992)Google Scholar
  7. 7.
    Garay, J.A., Gopal, I.S., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call control algorithms. Journal of Algorithms 23(1), 180–194 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Garefalakis, T.: A new family of randomized algorithms for list accessing. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 200–216. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Halldórsson, M.M., Patt-Shamir, B., Rawitz, D.: Online scheduling with interval conflicts. Theory of Computing Systems 53(2), 300–317 (2013); Also appeared in Proc. of the 28th STACS, pp. 472–483 (2011)Google Scholar
  10. 10.
    Irani, S.: Two results on the list update problem. Information Processing Letters 38(6), 301–306 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jaromczyk, J.W., Pezarski, A., Ślusarek, M.: An optimal competitive on-line algorithm for the minimal clique cover problem in interval and circular-arc graphs. In: Proc. of the 19th European Workshop on Computational Geometry, EWCG (2003)Google Scholar
  12. 12.
    Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. of the 5th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 302–311 (1994)Google Scholar
  13. 13.
    Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for the list update problem. Algorithmica 11(1), 15–32 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marcin Bienkowski
    • 1
  • Artur Kraska
    • 1
  • Paweł Schmidt
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations