Node Labels in Local Decision

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9439)

Abstract

The role of unique node identifiers in network computing is well understood as far as symmetry breaking is concerned. However, the unique identifiers also leak information about the computing environment—in particular, they provide some nodes with information related to the size of the network. It was recently proved that in the context of local decision, there are some decision problems such that (1) they cannot be solved without unique identifiers, and (2) unique node identifiers leak a sufficient amount of information such that the problem becomes solvable (PODC 2013).

In this work we study what is the minimal amount of information that we need to leak from the environment to the nodes in order to solve local decision problems. Our key results are related to scalar oraclesf that, for any given n, provide a multiset f(n) of n labels; then the adversary assigns the labels to the n nodes in the network. This is a direct generalisation of the usual assumption of unique node identifiers. We give a complete characterisation of the weakest oracle that leaks at least as much information as the unique identifiers.

Our main result is the following dichotomy: we classify scalar oracles as large and small, depending on their asymptotic behaviour, and show that (1) any large oracle is at least as powerful as the unique identifiers in the context of local decision problems, while (2) for any small oracle there are local decision problems that still benefit from unique identifiers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th Annual ACM Symposium on Theory of Computing (STOC 1980), pp. 82–93. ACM Press (1980). doi:10.1145/800141.804655Google Scholar
  2. 2.
    Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in anonymous networks. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 105–119. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Diks, K., Kranakis, E., Malinowski, A., Pelc, A.: Anonymous wireless rings. Theoretical Computer Science 145(1–2), 95–109 (1995). doi:10.1016/0304-3975(94)00178-LGoogle Scholar
  6. 6.
    Emek, Y., Pfister, C., Seidel, J., Wattenhofer, R.: Anonymous networks: randomization = 2-hop coloring. In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pp. 96–105. ACM Press (2014). doi:10.1145/2611462.2611478Google Scholar
  7. 7.
    Emek, Y., Seidel, J., Wattenhofer, R.: Computability in anonymous networks: Revocable vs. Irrecovable outputs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 183–195. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distributed Computing 16(2–3), 121–163 (2003), doi:10.1007/s00446-003-0091-yCrossRefGoogle Scholar
  9. 9.
    Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: Proc. 32nd Annual ACM Symposium on Principles of Distributed Computing (PODC 2013), pp. 157–165. ACM Press, New York (2013). doi:10.1145/2484239.2484264Google Scholar
  11. 11.
    Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Hirvonen, J., Suomela, J.: Node Labels in Local Decision (2015). arXiv:1507.00909v1Google Scholar
  13. 13.
    Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011). IEEE Computer Society Press (2011). doi:10.1109/FOCS.2011.17Google Scholar
  14. 14.
    Fraigniaud, P., Pelc, A., Peleg, D., Pérennes, S.: Assigning labels in an unknown anonymous network with a leader. Distributed Computing 14(3), 163–183 (2001). doi:10.1007/PL00008935Google Scholar
  15. 15.
    Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distributed Computing 16(2–3), 111–120 (2003). doi:10.1007/s00446-002-0073-5Google Scholar
  16. 16.
    Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. Journal of the ACM 60(5) 39, 1–23 (2013). doi:10.1145/2528405Google Scholar
  17. 17.
    Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic local algorithms, unique identifiers, and fractional graph colouring. Theoretical Computer Science (2014) (to appear). doi:10.1016/j.tcs.2014.06.044Google Scholar
  18. 18.
    Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lempiäinen, T., Luosto, K., Suomela, J., Virtema, J.: Weak models of distributed computing, with connections to modal logic. Distributed Computing 28(1), 31–53 (2015). doi:10.1007/s00446-013-0202-3Google Scholar
  19. 19.
    Kranakis, E.: Symmetry and computability in anonymous networks: a brief survey. In: Proc. 3rd Colloquium on Structural Information and Communication Complexity (SIROCCO 1996), pp. 1–16. Carleton University Press (1997)Google Scholar
  20. 20.
    Lenzen, C., Wattenhofer, R.: Leveraging linial’s locality limit. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992). doi:10.1137/0221015Google Scholar
  22. 22.
    Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static and dynamic graphs. In: Proc. 3rd Israel Symposium on the Theory of Computing and Systems (ISTCS 1995), pp. 268–278. IEEE (1995). doi:10.1109/ISTCS.1995.377023Google Scholar
  23. 23.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995). doi:10.1137/S0097539793254571Google Scholar
  24. 24.
    Norris, N.: Classifying anonymous networks: when can two networks compute the same set of vector-valued functions? In: Proc.1st Colloquium on Structural Information and Communication Complexity (SIROCCO 1994), pp. 83–98. Carleton University Press (1995)Google Scholar
  25. 25.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company (1994)Google Scholar
  26. 26.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  27. 27.
    Suomela, J.: Survey of local algorithms. ACM Computing Surveys 45(2) 24:1–40 (2013). doi:10.1145/2431211.2431223Google Scholar
  28. 28.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: part I—characterizing the solvable cases. IEEE Transactions on Parallel and Distributed Systems 7(1), 69–89 (1996). doi:10.1109/71.481599Google Scholar
  29. 29.
    Yamashita, M., Kameda, T.: Leader election problem on networks in which processor identity numbers are not distinct. IEEE Transactions on Parallel and Distributed Systems 10(9), 878–887 (1999). doi:10.1109/71.798313Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Juho Hirvonen
    • 2
  • Jukka Suomela
    • 2
  1. 1.Theoretical Computer Science FederationCNRS and University Paris DiderotParisFrance
  2. 2.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceAalto UniversityEspooFinland

Personalised recommendations