Collaborative Exploration by Energy-Constrained Mobile Robots

  • Shantanu Das
  • Dariusz Dereniowski
  • Christina Karousatou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9439)

Abstract

We study the problem of exploration of a tree by mobile agents (robots) that have limited energy. The energy constraint bounds the number of edges that can be traversed by a single agent. Thus we need a team of agents to completely explore the tree and the objective is to minimize the size of this team. The agents start at a single node, the designated root of the tree and the height of the tree is bounded by the energy bound B. We provide an exploration algorithm without any knowledge about the tree and we compare our algorithm with the optimal offline algorithm that has complete knowledge of the tree. Our algorithm has a competitive ratio of O(logB), independent of the number of nodes in the tree. We also show that this is the best possible competitive ratio for exploration of unknown trees.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM Journal on Computing 29(4), 1164–1188 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Awerbuch, B., Betke, M., Singh, M.: Piecemeal graph learning by a mobile robot. Information and Computation 152, 155–172 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxés, Y.: Convergecast and Broadcast by Power-Aware Mobile Agents. Algorithmica, 1–39 (2014)Google Scholar
  4. 4.
    Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: Proc. 30th ACM Symp. on Theory of Computing (STOC), pp. 269–287 (1998)Google Scholar
  5. 5.
    Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18(23), 231–254 (1995)Google Scholar
  6. 6.
    Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M.a. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Information and Computation 243, 37–49 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph exploration. In: Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 807–814 (2001)Google Scholar
  10. 10.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: new results on old and new algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proc. 24th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 27–36 (2012)Google Scholar
  16. 16.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33, 281–295 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rutishauser, S., Correll, N., Martinoli, A.: Collaborative Coverage using a Swarm of Networked Miniature Robots. Robotics and Autonomous Systems 57(5), 517–525 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shantanu Das
    • 1
  • Dariusz Dereniowski
    • 2
  • Christina Karousatou
    • 1
  1. 1.LIFAix-Marseille University and CNRSMarseilleFrance
  2. 2.Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland

Personalised recommendations