Information Spreading by Mobile Particles on a Line

  • Jurek Czyzowicz
  • Evangelos Kranakis
  • Eduardo Pacheco
  • Dominik Pająk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9439)


A set of identical particles is deployed on an infinite line. Each particle moves freely on the line at arbitrary but constant speed. When two particles come into contact they bounce acquiring new velocities according to the law of mechanics for elastic collisions. Each particle initially holds a piece of information. The meeting particles automatically transmit to each other their entire currently possessed information (i.e., the initial one and the one accumulated by means of previous collisions). Due to the fact that the number of collisions in this setting is finite [1] communication cannot last forever. This raises some interesting questions which we address in this paper: Will particle pj ever obtain the initial information of pi? Are colliding particles able to perform broadcasting, convergecast, or gossiping?

We establish necessary and sufficient conditions for any pair of particles to communicate as well as those needed to achieve gossiping, convergecast, and broadcasting. Although these conditions clearly depend on the initial ordering of the particles along the line, we prove that they are independent of their starting positions. Further, we show how to efficiently decide whether some of the aforementioned communication primitives can take place. Finally we explain how to compute the necessary time to carry out all these communication protocols and we describe a relationship between our problem and an important, longstanding open question in computational geometry.

Keywords and Phrases: Mobile agents, passive mobility, particles, communication, broadcasting, convergecast, gossiping, synchronous systems, elastic collisions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sevryuk, M.: Estimate of the number of collisions of n elastic particles on a line. Theoretical and Mathematical Physics 96(1), 818–826 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Dist. Comp. 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC, pp. 292–299 (2006)Google Scholar
  5. 5.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: PODC, pp. 267–276 (2010)Google Scholar
  6. 6.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: The role of common knowledge in pattern formation by autonomous mobile robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. TCS 411(26), 2433–2453 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. TCS 399(1), 71–82 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Kranakis, E., Pacheco, E.: Localization for a system of colliding robots. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 508–519. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E., Ponce, O.M., Pacheco, E.: Position discovery for a system of bouncing robots. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 341–355. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. In: ACM Symposium on Principles of Distributed Computing, PODC 2014, Paris, France, July 15-18, pp. 76–85 (2014)Google Scholar
  14. 14.
    Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: Determining majority in networks with local interactions and very small local memory. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: Antecedents and directions. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 1995. ‘Human Robot Interaction and Cooperative Robots, vol. 1, pp. 226–234. IEEE (1995)Google Scholar
  16. 16.
    Dudek, G., Jenkin, M.: Computational principles of mobile robotics. Cambridge University Press (2010)Google Scholar
  17. 17.
    Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: Exploring and mapping directed graphs. In: STOC, pp. 269–278 (1998)Google Scholar
  18. 18.
    Czyzowicz, J., Dobrev, S., An, H.-C., Krizanc, D.: The power of tokens: Rendezvous and symmetry detection for two mobile agents in a ring. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 234–246. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Murphy, T.: Dynamics of hard rods in one dimension. Journal of Statistical Physics 74(3), 889–901 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tonks, L.: The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Physical Review 50(10), 955 (1936)CrossRefMATHGoogle Scholar
  21. 21.
    Wylie, J., Yang, R., Zhang, Q.: Periodic orbits of inelastic particles on a ring. Physical Review E 86, 026601(2) (2012)Google Scholar
  22. 22.
    Cooley, B., Newton, P.: Iterated impact dynamics of n-beads on a ring. SIAM Rev. 47(2), 273–300 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Murphy, T., Cohen, E.: Maximum number of collisions among identical hard spheres. Journal of Statistical Physics 71(5-6), 1063–1080 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Friedetzky, T., Gąsieniec, L., Gorry, T., Martin, R.: Observe and remain silent (Communication-less agent location discovery). In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 407–418. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Chan, T.M.: Remarks on k-level algorithms in the plane. Manuscript, Univ. of Waterloo (1999)Google Scholar
  26. 26.
    Sharir, M., Agarwal, P.K.: Davenport-Schinzel sequences and their geometric applications. Cambridge University Press (1995)Google Scholar
  27. 27.
    Erdös, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point sets. A Survey of Combinatorial Theory, 139–149 (1973)Google Scholar
  28. 28.
    Lovász, L.: On the number of halving lines. Ann. Univ. Sci. Budapest, Eötvös, Sec. Math. 14, 107–108 (1971)MathSciNetMATHGoogle Scholar
  29. 29.
    Dey, T.K.: Improved bounds for planar k-sets and related problems. Discrete & Computational Geometry 19(3), 373–382 (1998)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Tóth, G.: Point sets with many k-sets. Discrete & Computational Geometry 26(2), 187–194 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Gregory, R.: Classical mechanics. Cambridge University Press (2006)Google Scholar
  32. 32.
    Everett, H., Robert, J.M., Van Kreveld, M.: An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal problems. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, ACM, pp. 38–46 (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Evangelos Kranakis
    • 2
  • Eduardo Pacheco
    • 3
  • Dominik Pająk
    • 4
  1. 1.Université du Québec en OutaouaisGatineauCanada
  2. 2.Carleton UniversityOttawaCanada
  3. 3.McGill UniversityMontrealCanada
  4. 4.University of CambridgeCambridgeUK

Personalised recommendations