A Faster Computation of All the Best Swap Edges of a Tree Spanner

  • Davide BilòEmail author
  • Feliciano Colella
  • Luciano Gualà
  • Stefano Leucci
  • Guido Proietti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9439)


Given a 2-edge connected, positively real-weighted graph G with n vertices and m edges, a tree σ-spanner of G is a spanning tree T in which for every pair of vertices, the ratio of their distance in T over that in G is bounded by σ, the so-called stretch factor of T. Tree spanners with provably good stretch factors find applications in communication networks, distributed systems, and network design, but unfortunately –as any tree-based infrastructure– they are highly sensitive to even a single link failure, since this results in a network disconnection. Thus, when such an event occurs, the overall effort that has to be afforded to rebuild an effective tree spanner (i.e., computational costs, set-up of new links, updating of the routing tables, etc.) can be prohibitive. However, if the edge failure is only transient, these costs can simply be avoided, by promptly reestablishing the connectivity through a careful selection of a temporary swap edge, i.e., an edge in G reconnecting the two subtrees of T induced by the edge failure. According to the tree spanner’s nature, a best swap edge for a failing edge e is then a swap edge generating a reconnected tree of minimum stretch factor w.r.t. distances in the graph G deprived of edge e. For this problem we provide two efficient linear-space solutions for both the weighted and the unweighted case, running in O(m2 logα(m,n)) and O(mn logn) time, respectively. As discussed in the paper, our algorithms also improve on the time complexity of previous results provided for other related settings of the problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Bartal, Y., Neiman, O.: Embedding metrics into ultrametrics and graphs into spanning trees with constant average distortion. In: Proc. of the 18th ACM-SIAM Symp. on Discrete Algorithms (SODA 2007), pp. 502–511. ACM Press (2007)Google Scholar
  2. 2.
    Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Trans. Algorithms 1(2), 243–264 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bilò, D., Gualà, L., Proietti, G.: Finding best swap edges minimizing the routing cost of a spanning tree. Algorithmica 68(2), 337–357 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bilò, D., Gualà, L., Proietti, G.: A faster computation of all the best swap edges of a shortest paths tree. Algorithmica (in press). doi:10.1007/s00453-014-9912-6Google Scholar
  5. 5.
    Brandstädt, A., Chepoi, V., Dragan, F.F.: Distance approximating trees for chordal and dually chordal graphs. Journal of Algorithms 30(1), 166–184 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, L., Corneil, D.G.: Tree spanners. SIAM J. on Disc. Math. 8, 359–387 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Das, S., Gfeller, B., Widmayer, P.: Computing all best swaps for minimum-stretch tree spanners. J. of Graph Algorithms and Applications 14(2), 287–306 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Di Salvo, A., Proietti, G.: Swapping a failing edge of a shortest paths tree by minimizing the average stretch factor. Theor. Comp. Science 383(1), 23–33 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM Journal on Computing 38(5), 1761–1781 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Italiano, G.F., Ramaswami, R.: Maintaining spanning trees of small diameter. Algorithmica 22(3), 275–304 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liebchen, C., Wünsch, G.: The zoo of tree spanner problems. Discrete Applied Mathematics 156, 569–587 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nardelli, E., Proietti, G., Widmayer, P.: Finding all the best swaps of a minimum diameter spanning tree under transient edge failures. Journal of Graph Algorithms and Applications 5(5), 39–57 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pettie, S.: Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 964–973. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The swap edges of a multiple-sources routing tree. Algorithmica 50(3), 299–311 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Davide Bilò
    • 1
    Email author
  • Feliciano Colella
    • 2
  • Luciano Gualà
    • 3
  • Stefano Leucci
    • 4
  • Guido Proietti
    • 4
    • 5
  1. 1.Dipartimento di Scienze Umanistiche e SocialiUniversità di SassariSassariItaly
  2. 2.Gran Sasso Science InstituteL’AquilaItaly
  3. 3.Dipartimento di Ingegneria dell’ImpresaUniversità di Roma “Tor Vergata”RomeItaly
  4. 4.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly
  5. 5.Istituto di Analisi dei Sistemi ed Informatica, CNRRomaItaly

Personalised recommendations