Path-Fault-Tolerant Approximate Shortest-Path Trees

  • Annalisa D’Andrea
  • Mattia D’Emidio
  • Daniele Frigioni
  • Stefano Leucci
  • Guido Proietti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9439)


Let G = (V,E) be an n-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a single-source shortest-path tree (SPT) of G with a sparse set of auxiliary edges selected from E, in order to create a structure which tolerates effectively a path failure in the SPT. This consists of a simultaneous fault of a set F of at most f adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k ≥ 1, it is possible to provide a very sparse (i.e., of size O(kn·f1 + 1/k)) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k − 1)(2|F| + 1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 3 and a size of O(n logn) for the special case f = 2, and that it can be converted into a very efficient approximate-distance sensitivity oracle, that allows to quickly (even in optimal time, if k = 1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex: Near optimal data structures for undirected unweighted graphs. Algorithmica 66(1), 18–50 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in õ(n2) time. In: Proc. of 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 271–280 (2004)Google Scholar
  4. 4.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O(n 2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path algorithms: An experimental study. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 51–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Fault-tolerant approximate shortest-path trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 137–148. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Bollobás, B.: Random Graphs. Cambridge University Press (2001)Google Scholar
  8. 8.
    Chechik, S.: Approximate distance oracles with constant query time. In: Proc. of 46th ACM Symposium on Theory of Computing (STOC), pp. 654–663 (2014)Google Scholar
  9. 9.
    Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: Proc. of 41st ACM Symposium on Theory of Computing (STOC), pp. 435–444. ACM (2009)Google Scholar
  10. 10.
    Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and routing schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 84–96. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Dynamically maintaining shortest path trees under batches of updates. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 286–297. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Experimental evaluation of dynamic shortest path tree algorithms on homogeneous batches. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 283–294. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36 (1964)Google Scholar
  14. 14.
    Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: Proc. of 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 748–757. IEEE (2012)Google Scholar
  15. 15.
    Gualà, L., Proietti, G.: Exact and approximate truthful mechanisms for the shortest paths tree problem. Algorithmica 49(3), 171–191 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.C.: The CAIDA IPv4 routed/24 topology dataset.
  18. 18.
    Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Polynomial-time computable backup tables for shortest-path routing. In: Proc. of 10th Internaltional Colloquium on Structural Information Complexity (SIROCCO). Proceedings in Informatics, vol. 17, pp. 163–177. Carleton Scientific (2003)Google Scholar
  19. 19.
    Mereu, A., Cherubini, D., Fanni, A., Frangioni, A.: Primary and backup paths optimal design for traffic engineering in hybrid igp/mpls networks. In: Proc. of 7th International Workshop on Design of Reliable Communication Networks (DRCN), pp. 273–280. IEEE (2009)Google Scholar
  20. 20.
    Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree is good and fast. Algorithmica 35(1), 56–74 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: Proc. of 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1073–1092. SIAM (2014)Google Scholar
  22. 22.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1), 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Annalisa D’Andrea
    • 1
  • Mattia D’Emidio
    • 1
  • Daniele Frigioni
    • 1
  • Stefano Leucci
    • 1
  • Guido Proietti
    • 1
    • 2
  1. 1.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”Consiglio Nazionale delle RicercheRomaItaly

Personalised recommendations