An Ensemble Matchers Based Rank Aggregation Method for Taxonomy Matching

  • Hailun LinEmail author
  • Yuanzhuo Wang
  • Yantao Jia
  • Jinhua Xiong
  • Peng Zhang
  • Xueqi Cheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9313)


Taxonomy matching is an important operation of knowledge base merging. Several matchers for automating taxonomy matching have been proposed and evaluated in the knowledge base community. Studies reveal that there is no single taxonomy matcher suitable for any domain-specific taxonomy mapping, therefore an ensemble of taxonomy matchers is essential. In this paper, we propose taxonomy metamatching, a distributed computing framework for assembling taxonomy matchers and generating an optimal taxonomy mapping. And we introduce TRA, a Threshold Rank Aggregation algorithm for this problem. Experimental results show that TRA outperforms state-of-the-art approaches regardless of domains and scales of taxonomies, which demonstrates that TRA performs good adaptability to taxonomy matching.


knowledge base merging taxonomy matching rank aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ba, M., Diallo, G.: Large-scale biomedical ontology matching with servomap. IRBM 34(1), 56–59 (2013)CrossRefGoogle Scholar
  2. 2.
    Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using wordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006)CrossRefGoogle Scholar
  4. 4.
    Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Communications of the ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  5. 5.
    Dwork, C., Kumary, R., Naorz, M., Sivakumarx, D.: Rank aggregation methods for the web. In: Proc. WWW (2001)Google Scholar
  6. 6.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proc. SIGMOD-SIGACT-SIGART Symp., pp. 102–113 (2001)Google Scholar
  7. 7.
    Grau, B.C., Dragistic, Z., Eckert, K., et al.: Results for the ontology alignment evaluation initiative 2013. In: Proc. ISWC (2013)Google Scholar
  8. 8.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  9. 9.
    Jiménez-Ruiz, E., Grau, B.C.: LogMap: Logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Lacoste-Julien, S., Palla, K., Davies, A., Kasneci, G., Graepel, T., Ghahramani, Z.: Sigma: Simple greedy matching for aligning large knowledge bases. In: Proc. SIGKDD, pp. 572–580 (2013)Google Scholar
  11. 11.
    Leacock, C., Chodorow, M., Miller, G.A.: Using corpus statistics and wordnet relations for sense identification. Computational Linguistics 24(1), 147–165 (1998)Google Scholar
  12. 12.
    Lee, T., Wang, Z., Wang, H., won Hwang, S.: Web scale taxonomy cleansing. VLDB Endowment 4(12) (2011)Google Scholar
  13. 13.
    Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology alignment framework. TKDE 21(8), 1218–1232 (2009)Google Scholar
  14. 14.
    Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    Ngo, D., Bellahsene, Z.: Yam++-results for oaei 2013. In: Proc. ISWC (2013)Google Scholar
  16. 16.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. TKDE 25(11), 158–176 (2013)Google Scholar
  18. 18.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Data Semantics 4, 146–171 (2005)zbMATHGoogle Scholar
  19. 19.
    Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: Probabilistic alignment of relations, instances, and schema. VLDB Endowment 5(3), 157–168 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hailun Lin
    • 1
    Email author
  • Yuanzhuo Wang
    • 1
  • Yantao Jia
    • 1
  • Jinhua Xiong
    • 1
  • Peng Zhang
    • 2
  • Xueqi Cheng
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Institute of Information EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations