Advertisement

Combining Semantic Query Disambiguation and Expansion to Improve Intelligent Information Retrieval

  • Bilel Elayeb
  • Ibrahim Bounhas
  • Oussama Ben Khiroun
  • Narjès Bellamine Ben Saoud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8946)

Abstract

We show in this paper how Semantic Query Disambiguation (SQD) combined with Semantic Query Expansion (SQE) can improve the effectiveness of intelligent information retrieval. Firstly, we propose and assess a possibilistic-based approach mixing SQD and SQE. This approach is based on corpus analysis using co-occurrence graphs modeled by possibilistic networks. Indeed, our model for relevance judgment uses possibility theory to take advantage of a double measure (possibility and necessity). Secondly, we propose and evaluate a probabilistic circuit-based approach combining SQD and SQE in an intelligent information retrieval context. In this approach, both SQD and SQE tasks are based on a graph data model, in which circuits between its nodes (words) represent the probabilistic scores for their semantic proximities. In order to compare the performance of these two approaches, we perform our experiments using the standard ROMANSEVAL test collection for the SQD task and the CLEF-2003 benchmark for the SQE process in French monolingual information retrieval evaluation. The results show the impact of SQD on SQE based on the recall/precision standard metrics for both the possibilistic and the probabilistic circuit-based approaches. Besides, the results of the possibilistic approach outperform the probabilistic ones, since it takes into account of imprecision cases.

Keywords

Semantic Query Disambiguation Semantic query expansion Word sense disambiguation Information retrieval Possibility theory Probability theory Semantic graph Semantic proximity 

Notes

Acknowledgements

We are grateful to the Evaluations and Language resources Distribution Agency (ELDA) which kindly provided us the Le Monde 94 and ATS 94 document collections of the CLEF 2003 campaign.

References

  1. 1.
    Krovetz, R.: Homonymy and polysemy in information retrieval. In: Proceedings of the 8th Conference on European Chapter of the Association for Computational Linguistics, pp. 72–79. Association for Computational Linguistics, Stroudsburg, PA, USA (1997)Google Scholar
  2. 2.
    Paskalis, F.B.D., Khodra, M.L.: Word sense disambiguation in information retrieval using query expansion. In: International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6 (2011)Google Scholar
  3. 3.
    Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41, 1–69 (2009)CrossRefGoogle Scholar
  4. 4.
    Chan, Y.S., Ng, H.T.: Word sense disambiguation improves statistical machine translation. In: 45th Annual Meeting of the Association for Computational Linguistics (ACL-2007), pp. 33–40 (2007)Google Scholar
  5. 5.
    Carpuat, M., Wu, D.: Improving statistical machine translation using word sense disambiguation. In: The 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), pp. 61–72 (2007)Google Scholar
  6. 6.
    Chifu, A.-G., Ionescu, R.-T.: Word sense disambiguation to improve precision for ambiguous queries. Cent. Eur. J. Comput. Sci. 2, 398–411 (2012)zbMATHGoogle Scholar
  7. 7.
    Krovetz, R., Croft, W.B.: Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst. 10, 115–141 (1992)CrossRefGoogle Scholar
  8. 8.
    Voorhees, E.M.: Using WordNet to disambiguate word senses for text retrieval. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 171–180. ACM, New York, NY, USA (1993)Google Scholar
  9. 9.
    Schütze, H., Pedersen, J.O.: Information retrieval based on word senses (1995)Google Scholar
  10. 10.
    Gonzalo, J., Verdejo, F., Chugur, I., Cigarrin, J.: Indexing with WordNet synsets can improve text retrieval. In: Proceedings of the COLING-ACL Workshop on Usage of WordNet in Natural Language Processing Systems, pp. 38–44 (1998)Google Scholar
  11. 11.
    Stokoe, C., Oakes, M.P., Tait, J.: Word sense disambiguation in information retrieval revisited. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 159–166. ACM, New York, NY, USA (2003)Google Scholar
  12. 12.
    Kim, S., Seo, H., Rim, H.: Information retrieval using word senses: root sense tagging approach. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258–265 (2004)Google Scholar
  13. 13.
    Liu, S., Yu, C., Meng, W.: Word sense disambiguation in queries. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 525–532. ACM, New York, NY, USA (2005)Google Scholar
  14. 14.
    Zhong, Z., Ng, H.T.: Word sense disambiguation improves information retrieval. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers – vol. 1, pp. 273–282. Association for Computational Linguistics, Stroudsburg, PA, USA (2012)Google Scholar
  15. 15.
    Elayeb, B., Bounhas, I., Ben Khiroun, O., Evrard, F., Bellamine-BenSaoud, N.: Towards a possibilistic information retrieval system using semantic query expansion. Int. J. Intell. Inf. Technol. 7, 1–25 (2011)CrossRefGoogle Scholar
  16. 16.
    Carpineto, C., Romano, G.: A survey of automatic query expansion in information retrieval. ACM Comput. Surv. (CSUR) 44, 1–50 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ben Khiroun, O., Elayeb, B., Bounhas, I., Evrard, F., Bellamine-BenSaoud, N.: A possibilistic approach for automatic word sense disambiguation. In: Proceedings of the 24th Conference on Computational Linguistics and Speech Processing (ROCLING), pp. 261–275, Taiwan (2012)Google Scholar
  18. 18.
    Ben Khiroun, O., Elayeb, B., Bounhas, I., Evrard, F., Bellamine-BenSaoud, N.: Improving query expansion by automatic query disambiguation in intelligent information retrieval. In: The 6th International Conference on Agents and Artificial Intelligence (ICAART 2014), pp. 153–160. Angers, Loire Valley, France (2014)Google Scholar
  19. 19.
    Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Sanderson, M.: Word sense disambiguation and information retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94), pp. 142–151. Springer, New York (1994)Google Scholar
  21. 21.
    Sanderson, M.: Retrieving with good sense. Inf. Retr. 2, 49–69 (2000)CrossRefGoogle Scholar
  22. 22.
    Gonzalo, J., Peñas, A., Verdejo, F.: Lexical ambiguity and information retrieval revisited. In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in NLP and Very Large Corpora (EMNLP/VLC), pp. 195–202 (1999)Google Scholar
  23. 23.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: an on-line lexical database. Int. J. Lexicogr. 3, 235–244 (1990)CrossRefGoogle Scholar
  24. 24.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM, New York, NY, USA (1998)Google Scholar
  25. 25.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Rocchio, J.: Relevance Feedback in Information Retrieval. The SMART Retrieval System, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  27. 27.
    Voorhees, E.M.: Query expansion using lexical-semantic relations. In: Croft, B.W., van Rijsbergen, C.J. (eds.) Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94), pp. 61–69. Springer, New York (1994)Google Scholar
  28. 28.
    Smeaton, A.F.: Using NLP or NLP resources for information retrieval tasks. In: Strzalkowski, T. (ed.) Natural Language Information Retrieval, pp. 99–111. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  29. 29.
    Boughanem, M., Brini, A., Dubois, D.: Possibilistic networks for information retrieval. Int. J. Approx. Reason. 50, 957–968 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ben Khiroun, O., Elayeb, B., Bounhas, I., Evrard, F., Bellamine Ben Saoud, N.: A possibilistic approach for semantic query expansion. In: The 4th International Conference on Internet Technologies and Applications (ITA 2011), Wrexham Wales (UK), pp. 308–316 (2011)Google Scholar
  31. 31.
    Elayeb, B.: SARIPOD: Système multi-Agent de Recherche Intelligente POssibiliste de Documents Web. Ph.D. thesis, INP Toulouse France (2009)Google Scholar
  32. 32.
    Elayeb, B., Evrard, F., Zaghdoud, M., Ben Ahmed, M.: Towards an intelligent possibilistic web information retrieval using multiagent system. Interact. Technol. Smart Educ. (ITSE), Spec. Issue N. Learn. Support Syst. 6, 40–59 (2009)Google Scholar
  33. 33.
    Fang, H.: A re-examination of query expansion using lexical resources. In: Proceedings of ACL-08: HLT, pp. 139–147 (2008)Google Scholar
  34. 34.
    Cao, G., Nie, J.-Y., Bai, J.: Integrating word relationships into language models. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 298–305. ACM, New York, NY, USA (2005)Google Scholar
  35. 35.
    Agirre, E., Arregi, X., Otegi, A.: Document expansion based on WordNet for robust IR. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 9–17. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)Google Scholar
  36. 36.
    Pinto, F.J., Pérez-sanjulián, C.F.: Automatic query expansion and word sense disambiguation with long and short queries using WordNet under vector model. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos. 2, 17–23 (2008)Google Scholar
  37. 37.
    Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Dubois, D., Prade, H.: Possibility theory and its application: where do we stand. Mathw. Soft Comput. 18, 18–31 (2011)Google Scholar
  39. 39.
    Dubois, D., Prade, H.: Possibility theory. In: Meyers, R.A. (ed.) Computational Complexity, pp. 2240–2252. Springer, New York (2012)CrossRefGoogle Scholar
  40. 40.
    Braschler, M., Peters, C.: CLEF 2003 methodology and metrics. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 7–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  41. 41.
    Segond, F.: Framework and results for French. Comput. Humanit. 34, 49–60 (2000)CrossRefGoogle Scholar
  42. 42.
    Ounis, I., Lioma, C., Macdonald, C., Plachouras, V.: Research directions in terrier: a search engine for advanced retrieval on the web. CEPIS Upgrad. J. 8, 49–56 (2007)Google Scholar
  43. 43.
    Ogilvie, P., Voorhees, E., Callan, J.: On the number of terms used in automatic query expansion. Inf. Retr. 12, 666–679 (2009)CrossRefGoogle Scholar
  44. 44.
    Elayeb, B., Bounhas, I., Ben Khiroun, O., Evrard, F., Bellamine-BenSaoud, N.: A comparative study between possibilistic and probabilistic approaches for monolingual word sense disambiguation. Knowl. Inf. Syst. (2014). doi: 10.1007/s10115-014-0753-z Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bilel Elayeb
    • 1
    • 3
  • Ibrahim Bounhas
    • 2
  • Oussama Ben Khiroun
    • 1
  • Narjès Bellamine Ben Saoud
    • 1
    • 4
  1. 1.RIADI Research LaboratoryENSI Manouba UniversityManoubaTunisia
  2. 2.LISI Laboratory of Computer Science for Industrial SystemsISD Manouba UniversityManoubaTunisia
  3. 3.Emirates College of TechnologyAbu DhabiUAE
  4. 4.Higher Institute of Informatics (ISI)Tunis El Manar UniversityTunisTunisia

Personalised recommendations