Airborne Ultrasonic Tactile Display BCI

  • Katsuhiko Hamada
  • Hiromu Mori
  • Hiroyuki Shinoda
  • Tomasz M. Rutkowski
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter presents results of our project, which studied whether contactless and airborne ultrasonic tactile display (AUTD) stimuli delivered to a user’s palms could serve as a platform for a brain computer interface (BCI) paradigm. We used six palm positions to evoke combined somatosensory brain responses to implement a novel contactless tactile BCI. This achievement was awarded the top prize in the Annual BCI Research Award 2014 competition. This chapter also presents a comparison with a classical attached vibrotactile transducer-based BCI paradigm. Experiment results from subjects performing online experiments validate the novel BCI paradigm.

Notes

Acknowledgments

H. Mori and T.M. Rutkowski were supported in part by the Strategic Information and Communications R&D Promotion Program No. 121803027 of The Ministry of Internal Affairs and Communication in Japan.

References

  1. A.-M. Brouwer, J.B.F. Van Erp, A tactile P300 brain-computer interface. Frontiers Neurosci. 4(19) (2010) [Online]. http://www.frontiersin.org/neuroprosthetics/10.3389/fnins.2010.00019/abstract
  2. K. Hamada, Brain-computer interface using airborne ultrasound tactile display. Master Thesis, The University of Tokyo, Tokyo, Japan (2014) (in Japanese)Google Scholar
  3. K. Hamada, H. Mori, H. Shinoda, T.M. Rutkowski, Airborne ultrasonic tactile display brain-computer interface paradigm. In Proceedings of the 6th International Brain-Computer Interface Conference 2014, eds. by G. Mueller-Putz, G. Bauernfeind, C. Brunner, D. Steyrl, S. Wriessnegger, R. Scherer. 1em plus 0.5em minus 0.4em Graz University of Technology Publishing House (2014). Article ID 018-1-4. [Online]. http://castor.tugraz.at/doku/BCIMeeting2014/bci2014_018
  4. T. Iwamoto, M. Tatezono, H. Shinoda, Non-contact method for producing tactile sensation using airborne ultrasound. In Haptics: Perception, Devices and Scenarios, ser. Lecture Notes in Computer Science, ed. by M. Ferre 1em plus 0.5em minus 0.4em vol 5024 (Springer, Berlin, 2008) pp. 504–513. [Online]. http://dx.doi.org/10.1007/978-3-540-69057-3_64
  5. D.J. Krusienski, E.W. Sellers, F. Cabestaing, S. Bayoudh, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, A comparison of classification techniques for the P300 speller. J. Neural Eng. 3(4), 299 (2006). [Online]. http://stacks.iop.org/1741-2552/3/i=4/a=007
  6. H. Mori, Y. Matsumoto, S. Makino, V. Kryssanov, T.M. Rutkowski, Vibrotactile stimulus frequency optimization for the haptic BCI prototype. In Proceedings of The 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligent Systems, Kobe, Japan, November 20–24 (2012) pp. 2150–2153. [Online]. http://arxiv.org/abs/1210.2942
  7. G. Muller-Putz, R. Scherer, C. Neuper, G. Pfurtscheller, Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans. Neural Syst. Rehab. Eng. 14(1), 30–37 (2006)CrossRefGoogle Scholar
  8. T.M. Rutkowski, The autdBCI and a robot control (the winner project of The BCI Annual Research Award 2014). YouTube video. [Online]. http://youtu.be/JE29CMluBh0
  9. G. Schalk, J. Mellinger, A practical guide to brain-computer interfacing with BCI2000. 1em plus 0.5em minus 0.4em (Springer, London, 2010)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Katsuhiko Hamada
    • 1
  • Hiromu Mori
    • 2
  • Hiroyuki Shinoda
    • 1
  • Tomasz M. Rutkowski
    • 2
    • 3
  1. 1.The University of TokyoTokyoJapan
  2. 2.Life Science Center of TARAUniversity of TsukubaTsukubaJapan
  3. 3.RIKEN Brain Science InstituteWako-shiJapan

Personalised recommendations