International Colloquium on Theoretical Aspects of Computing

Theoretical Aspects of Computing - ICTAC 2015 pp 290-306 | Cite as

A Totally Distributed Fair Scheduler for Population Protocols by Randomized Handshakes

  • N. Ouled Abdallah
  • M. Jmaiel
  • M. Mosbah
  • A. Zemmari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9399)

Abstract

A population protocol is a computational model based on pairwise interactions and designed for networks of passively mobile finite state agents. In the population protocol model, and also in the models that extend it, the interacting pairs are supposed to be chosen by a theoretical fair scheduler. In this paper, we present the HS Scheduler which is a totally distributed synchronous randomized handshake procedure. We then prove that this randomized handshake procedure can be a probabilistic consistent scheduler for population protocols that is fair with probability 1. By adopting a protocol aware version of the HS Scheduler, we introduce the iterated population protocols model where nodes can stop participating in the protocol’s computation once they reach a final state. We then study the time complexity of the computation of a particular case of this model where a final state is reached in only one computation step. We present some upper bounds that are later validated by simulations results.

Keywords

Population protocol Distributed randomized handshake Probabilistic fair scheduler Iterated population protocol 

References

  1. 1.
    Abdou, W., Ouled Abdallah, N., Mosbah, M.: ViSiDiA: a Java framework for designing, simulating, and visualizing distributed algorithms. In: IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp. 43–46 (2014)Google Scholar
  2. 2.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 82–93. ACM (1980)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Trans. Auton. Adapt. Syst. 3(4), 13 (2008)CrossRefGoogle Scholar
  5. 5.
    Becchetti, L., Bergamini, L., Ficarola, F., Salvatore, F., Vitaletti, A.: First experiences with the implementation and evaluation of population protocols on physical devices. IEEE Int. Conf. Green Comput. Commun. (GreenCom) 2012, 335–342 (2012)Google Scholar
  6. 6.
    Chatzigiannakis, I., Dolev, S., Fekete, S.P., Michail, O., Spirakis, P.G.: Not all fair probabilistic schedulers are equivalent. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 33–47. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating logarithmic space machines. In: CoRR (2010). abs/1004.3395
  8. 8.
    Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming: Part II (2009)Google Scholar
  9. 9.
    Métivier, Y., Saheb, N., Zemmari, A.: Analysis of a randomized rendezvous algorithm. Inf. Comput. 184(1), 109–128 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Terminating population protocols via some minimal global knowledge assumptions. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 77–89. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Ouled Abdallah, N., Hadj Kacem, H., Mosbah, M., Zemmari, A.: Randomized broadcasting in wireless mobile sensor networks. Concurr. Comput. Pract. Exp. 25(2), 203–217 (2013)CrossRefGoogle Scholar
  12. 12.
    Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  13. 13.
    Zemmari, A.: On handshakes in random graphs. Inf. Process. Lett. 108, 119–123 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • N. Ouled Abdallah
    • 1
    • 2
  • M. Jmaiel
    • 2
    • 3
  • M. Mosbah
    • 1
  • A. Zemmari
    • 1
  1. 1.LaBRIUniversity of Bordeaux - CNRSTalenceFrance
  2. 2.ReDCAD LaboratoryUniversity of Sfax, National School of Engineers of SfaxSfaxTunisia
  3. 3.Research Center for Computer Science, Multimedia and Digital Data Processing of SfaxSfaxTunisia

Personalised recommendations