Learning Register Automata with Fresh Value Generation

  • Fides Aarts
  • Paul Fiterau-Brostean
  • Harco Kuppens
  • Frits Vaandrager
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9399)


We present a new algorithm for active learning of register automata. Our algorithm uses counterexample-guided abstraction refinement to automatically construct a component which maps (in a history dependent manner) the large set of actions of an implementation into a small set of actions that can be handled by a Mealy machine learner. The class of register automata that is handled by our algorithm extends previous definitions since it allows for the generation of fresh output values. This feature is crucial in many real-world systems (e.g. servers that generate identifiers, passwords or sequence numbers). We have implemented our new algorithm in a tool called Tomte.


Operational Semantic Input Symbol Automaton Learning Output Symbol Equivalence Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aarts, F.: Tomte: bridging the gap between active learning and real-world systems. Ph.D. thesis, Radboud University Nijmegen, October 2014Google Scholar
  2. 2.
    Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Aarts, F., Howar, F., Kuppens, H., Vaandrager, F.: Algorithms for inferring register automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 202–219. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-state communication protocols using regular inference with abstraction. FMSD 46(1), 1–41 (2015)zbMATHGoogle Scholar
  5. 5.
    Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Software Testing Verification and Validation Workshop, pp. 461–468. IEEE (2013)Google Scholar
  6. 6.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: Libalf: the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. J. Logic Algebraic Methods Program. 84(1), 54–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 250–264. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineering using Lego. In: WOOT 2014, IEEE Computer Society, August 2014Google Scholar
  12. 12.
    Cho, C., Babic, D., Shin, E., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: CCS, pp. 426–439. ACM (2010)Google Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Fiterau-Brostean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Koopman, P., Achten, P., Plasmeijer, R.: Model-based shrinking for state-based testing. In: McCarthy, J. (ed.) TFP 2013. LNCS, vol. 8322, pp. 107–124. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Bryant, R.E.: A view from the engine room: computational support for symbolic model checking. In: Grumberg, O., Veith, H. (eds.) 25 years of Model Checking. LNCS, vol. 5000, pp. 145–149. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010) CrossRefzbMATHGoogle Scholar
  18. 18.
    Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012) Google Scholar
  20. 20.
    Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Mach. Learn. 96(1–2), 65–98 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  22. 22.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE, IFIP Conference Proceedings, vol. 156, pp. 225–240. Kluwer (1999)Google Scholar
  23. 23.
    Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)CrossRefGoogle Scholar
  24. 24.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)CrossRefGoogle Scholar
  25. 25.
    Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  26. 26.
    Tijssen, M.: Automatic modeling of SSH implementations with state machine learning algorithms. Bachelor thesis, Radboud University, Nijmegen, June 2014Google Scholar
  27. 27.
    Volpato, M., Tretmans, J.: Active learning of nondeterministic systems from an ioco perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 220–235. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fides Aarts
    • 1
  • Paul Fiterau-Brostean
    • 1
  • Harco Kuppens
    • 1
  • Frits Vaandrager
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations