Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data

  • Kian Hsiang LowEmail author
  • Jie Chen
  • Trong Nghia Hoang
  • Nuo Xu
  • Patrick Jaillet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8964)


The expressive power of Gaussian process (GP) models comes at a cost of poor scalability in the size of the data. To improve their scalability, this paper presents an overview of our recent progress in scaling up GP models for large spatiotemporally correlated data through parallelization on clusters of machines, online learning, and nonmyopic active sensing/learning.


Gaussian Process Predictive Performance Parallel Machine Time Slice Road Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Singapore-MIT Alliance for Research & Technology Subaward Agreements No. 41 and No. 52.


  1. 1.
    Cao, N., Low, K.H., Dolan, J.M.: Multi-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms. In: Proceedings of AAMAS, pp. 7–14 (2013)Google Scholar
  2. 2.
    Chao, Y., Li, Z., Farrara, J.D., Hung, P.: Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J. Atmos. Ocean. Technol. 26(7), 1415–1426 (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Cao, N., Low, K.H., Ouyang, R., Tan, C.K.Y., Jaillet, P.: Parallel Gaussian process regression with low-rank covariance matrix approximations. In: Proceedings of UAI (2013)Google Scholar
  4. 4.
    Chen, J., Low, K.H., Tan, C.K.Y.: Gaussian process-based decentralized data fusion and active sensing for mobility-on-demand system. In: Proceedings of RSS (2013)Google Scholar
  5. 5.
    Chen, J., Low, K.H., Tan, C.K.Y., Oran, A., Jaillet, P., Dolan, J.M., Sukhatme, G.S.: Decentralized data fusion and active sensing with mobile sensors for modeling and predicting spatiotemporal traffic phenomena. In: Proceedings of UAI, pp. 163–173 (2012)Google Scholar
  6. 6.
    Choudhury, A., Nair, P.B., Keane, A.J.: A data parallel approach for large-scale Gaussian process modeling. In: Proceedings of SDM, pp. 95–111 (2002)Google Scholar
  7. 7.
    Cressie, N., Johannesson, G.: Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. B 70(1), 209–226 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  9. 9.
    Csató, L., Opper, M.: Sparse online Gaussian processes. Neural Comput. 14, 641–669 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dolan, J.M., Podnar, G., Stancliff, S., Low, K.H., Elfes, A., Higinbotham, J., Hosler, J.C., Moisan, T.A., Moisan, J.: Cooperative aquatic sensing using the telesupervised adaptive ocean sensor fleet. In: Proceedings of SPIE Conference on Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, vol. 7473 (2009)Google Scholar
  11. 11.
    Furrer, R., Genton, M.G., Nychka, D.: Covariance tapering for interpolation of large spatial datasets. JCGS 15(3), 502–523 (2006)MathSciNetGoogle Scholar
  12. 12.
    Hoang, T.N., Low, K.H., Jaillet, P., Kankanhalli, M.: Nonmyopic \(\epsilon \)-Bayes-optimal active learning of Gaussian processes. In: Proceedings of ICML, pp. 739–747 (2014)Google Scholar
  13. 13.
    Hoang, T.N., Low, K.H., Jaillet, P., Kankanhalli, M.: Active learning is planning: nonmyopic \(\epsilon \)-Bayes-Optimal active learning of Gaussian processes. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS, vol. 8726, pp. 494–498. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Ingram, B., Cornford, D.: Parallel geostatistics for sparse and dense datasets. In: Atkinson, P.M., Lloyd, C.D. (eds.) geoENV VII. Quantitative Geology and Geostatistics, vol. 16, pp. 371–381. Springer, Netherlands (2010)Google Scholar
  15. 15.
    Krause, A., Guestrin, C.: Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach. In: Proceedings of ICML, pp. 449–456 (2007)Google Scholar
  16. 16.
    Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. JMLR 9, 235–284 (2008)zbMATHGoogle Scholar
  17. 17.
    Leonard, N.E., Palley, D.A., Lekien, F., Sepulchre, R., Fratantoni, D.M., Davis, R.E.: Collective motion, sensor networks, and ocean sampling. Proc. IEEE 95(1), 48–74 (2007)CrossRefGoogle Scholar
  18. 18.
    Low, K.H., Dolan, J.M., Khosla, P.: Adaptive multi-robot wide-area exploration and mapping. In: Proceedings of AAMAS, pp. 23–30 (2008)Google Scholar
  19. 19.
    Low, K.H., Dolan, J.M., Khosla, P.: Information-theoretic approach to efficient adaptive path planning for mobile robotic environmental sensing. In: Proceedings of ICAPS, pp. 233–240 (2009)Google Scholar
  20. 20.
    Low, K.H., Dolan, J.M., Khosla, P.: Active Markov information-theoretic path planning for robotic environmental sensing. In: Proceedings of AAMAS, pp. 753–760 (2011)Google Scholar
  21. 21.
    Low, K.H., Podnar, G., Stancliff, S., Dolan, J.M., Elfes, A.: Robot boats as a mobile aquatic sensor network. In: Proceedings of IPSN-09 Workshop on Sensor Networks for Earth and Space Science Applications (2009)Google Scholar
  22. 22.
    Low, K.H., Xu, N., Chen, J., Lim, K.K., Özgül, E.B.: Generalized online sparse gaussian processes with application to persistent mobile robot localization. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS, vol. 8726, pp. 499–503. Springer, Heidelberg (2014) Google Scholar
  23. 23.
    Martin, R.J.: Comparing and contrasting some environmental and experimental design problems. Environmetrics 12(3), 303–317 (2001)CrossRefGoogle Scholar
  24. 24.
    Ouyang, R., Low, K.H., Chen, J., Jaillet, P.: Multi-robot active sensing of non-stationary Gaussian process-based environmental phenomena. In: Proceedings of AAMAS, pp. 573–580 (2014)Google Scholar
  25. 25.
    Park, C., Huang, J.Z., Ding, Y.: Domain decomposition approach for fast Gaussian process regression of large spatial data sets. JMLR 12, 1697–1728 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Podnar, G., Dolan, J.M., Low, K.H., Elfes, A.: Telesupervised remote surface water quality sensing. In: Proceedings of IEEE Aerospace Conference (2010)Google Scholar
  27. 27.
    Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. JMLR 6, 1939–1959 (2005)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Sang, H., Huang, J.Z.: A full scale approximation of covariance functions for large spatial data sets. J. R. Stat. Soc. B 74(1), 111–132 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schwaighofer, A., Tresp, V.: Transductive and inductive methods for approximate Gaussian process regression. In: Proceedings of NIPS, pp. 953–960 (2002)Google Scholar
  30. 30.
    Snelson, E.: Local and global sparse Gaussian process approximations. In: Proceedings of AISTATS (2007)Google Scholar
  31. 31.
    Wikle, C.K.: Low-rank representations for spatial processes. In: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, pp. 107–118. Chapman and Hall, Boca Raton (2010)CrossRefGoogle Scholar
  32. 32.
    Xu, N., Low, K.H., Chen, J., Lim, K.K., Özgül, E.B.: GP-Localize: persistent mobile robot localization using online sparse Gaussian process observation model. In: Proceedings of AAAI, pp. 2585–2592 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kian Hsiang Low
    • 1
    Email author
  • Jie Chen
    • 2
  • Trong Nghia Hoang
    • 1
  • Nuo Xu
    • 1
  • Patrick Jaillet
    • 3
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.Singapore-MIT Alliance for Research and TechnologySingaporeSingapore
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations