Advertisement

Improving Word Alignment Through Morphological Analysis

  • Vuong Van Bui
  • Thanh Trung Tran
  • Nhat Bich Thi Nguyen
  • Tai Dinh Pham
  • Anh Ngoc Le
  • Cuong Anh Le
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9376)

Abstract

Word alignment plays a critical role in statistical machine translation systems. The famous word alignment system, IBM models series, currently operates on only surface forms of words regardless of their linguistic features. This deficiency usually leads to many data sparseness problems. Therefore, we present an extension that enables the integration of morphological analysis into the traditional IBM models. Experiments on English-Vietnamese tasks show that the new model produces better results not only in word alignment but also in final translation performance.

Keywords

Machine translation Word alignment IBM models Morphological analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, P.F., Della Pietra, S.A., Della Pietra, V.J., Goldsmith, M.J., Hajic, J., Mercer, R.L., Mohanty, S.: But dictionaries are data too. In: Proceedings of the Workshop on Human Language Technology, pp. 202–205. Association for Computational Linguistics (1993)Google Scholar
  2. 2.
    Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics 19(2), 263–311 (1993)Google Scholar
  3. 3.
    Federico, M., Bertoldi, N., Cettolo, M.: Irstlm: an open source toolkit for handling large scale language models. In: Interspeech, pp. 1618–1621 (2008)Google Scholar
  4. 4.
    Koehn, P., Hoang, H.: Factored translation models. In: EMNLP-CoNLL, pp. 868–876 (2007)Google Scholar
  5. 5.
    Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 177–180. Association for Computational Linguistics (2007)Google Scholar
  6. 6.
    Lee, Y.-S.: Morphological analysis for statistical machine translation. In: Proceedings of HLT-NAACL 2004: Short Papers, pp. 57–60. Association for Computational Linguistics (2004)Google Scholar
  7. 7.
    Moore, R.C.: Improving ibm word-alignment model 1. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 518. Association for Computational Linguistics (2004)Google Scholar
  8. 8.
    Och, F.J.: Minimum error rate training in statistical machine translation. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, vol. 1, pp. 160–167. Association for Computational Linguistics (2003)Google Scholar
  9. 9.
    Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models. Computational Linguistics 29(1), 19–51 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)Google Scholar
  11. 11.
    Sadat, F., Habash, N.: Combination of arabic preprocessing schemes for statistical machine translation. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 1–8. Association for Computational Linguistics (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vuong Van Bui
    • 1
  • Thanh Trung Tran
    • 1
  • Nhat Bich Thi Nguyen
    • 1
  • Tai Dinh Pham
    • 1
  • Anh Ngoc Le
    • 1
  • Cuong Anh Le
    • 1
  1. 1.Computer Science DepartmentVietnam National University, University of Engineering and TechnologyHanoiVietnam

Personalised recommendations