International Joint Conference on Computer Vision, Imaging and Computer Graphics

Computer Vision, Imaging and Computer Graphics - Theory and Applications pp 115-135 | Cite as

Generalized Pythagoras Trees: A Fractal Approach to Hierarchy Visualization

  • Fabian Beck
  • Michael Burch
  • Tanja Munz
  • Lorenzo Di Silvestro
  • Daniel Weiskopf
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 550)

Abstract

Through their recursive definition, many fractals have an inherent hierarchical structure. An example are binary branching Pythagoras Trees. By stopping the recursion in certain branches, a binary hierarchy can be encoded and visualized. But this binary encoding is an obstacle for representing general hierarchical data such as file systems or phylogenetic trees, which usually branch into more than two subhierarchies. We hence extend Pythagoras Trees to arbitrarily branching trees by adapting the geometry of the original fractal approach. Each vertex in the hierarchy is visualized as a rectangle sized according to a metric. We analyze several visual parameters such as length, width, order, and color of the nodes against the use of different metrics. Interactions help to zoom, browse, and filter the hierarchy. The usefulness of our technique is illustrated by two case studies visualizing directory structures and a large phylogenetic tree. We compare our approach with existing tree diagrams and discuss questions of geometry, perception, readability, and aesthetics.

Keywords

Hierarchy visualization Fractals 

References

  1. 1.
    Andrews, K., Heidegger, H.: Information slices: visualising and exploring large hierarchies using cascading, semicircular disks. In: Proceedings of IEEE Symposium on Information Visualization, pp. 9–11 (1998)Google Scholar
  2. 2.
    Balzer, M., Deussen, O., Lewerentz, C.: Voronoi treemaps for the visualization of software metrics. In: Proceedings of Software Visualization, pp. 165–172 (2005)Google Scholar
  3. 3.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  4. 4.
    Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: Genbank. Nucleic Acids Res. 38(suppl 1), D46–D51 (2010)CrossRefGoogle Scholar
  5. 5.
    Bosman, A.E.: Het wondere onderzoekingsveld der vlakke meetkunde. N.V. Uitgeversmaatschappij Parcival, Breda (1957)Google Scholar
  6. 6.
    Burch, M., Konevtsova, N., Heinrich, J., Höferlin, M., Weiskopf, D.: Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Trans. Vis. Comput. Graph. 17(12), 2440–2448 (2011)CrossRefGoogle Scholar
  7. 7.
    Burch, M., Raschke, M., Weiskopf, D.: Indented pixel tree plots. In: Proceedings of International Symposium on Visual Computing, pp. 338–349 (2010)Google Scholar
  8. 8.
    Carrière, S.J., Kazman, R.: Research report: interacting with huge hierarchies: beyond cone trees. In: Proceedings of Information Visualization, pp. 74–81 (1995)Google Scholar
  9. 9.
    Devroye, L., Kruszewski, P.: The botanical beauty of random binary trees. In: Proceedings of Graph Drawing, pp. 166–177 (1995)Google Scholar
  10. 10.
    Eades, P.: Drawing free trees. Bull. Inst. Comb. Appl. 5, 10–36 (1992)MathSciNetMATHGoogle Scholar
  11. 11.
    Grivet, S., Auber, D., Domenger, J., Melançon, G.: Bubble tree drawing algorithm. In: Proceedings of International Conference on Computer Vision and Graphics, pp. 633–641 (2004)Google Scholar
  12. 12.
    Holton, M.: Strands, gravity, and botanical tree imaginery. Comput. Graph. Forum 13(1), 57–67 (1994)CrossRefGoogle Scholar
  13. 13.
    Jürgensmann, S., Schulz, H.J.: A visual survey of tree visualization. In: IEEE Visweek 2010 Posters (2010)Google Scholar
  14. 14.
    Kleiberg, E., van de Wetering, H., van Wijk, J.J.: Botanical visualization of huge hierarchies. In: Proceedings of Information Visualization, pp. 87–94 (2001)Google Scholar
  15. 15.
    Koike, H.: Generalized fractal views: a fractal-based method for controlling information display. ACM Trans. Inf. Syst. 13(3), 305–324 (1995)CrossRefGoogle Scholar
  16. 16.
    Koike, H., Yoshihara, H.: Fractal approaches for visualizing huge hierarchies. In: Proceedings of Visual Languages, pp. 55–60 (1993)Google Scholar
  17. 17.
    Kruskal, J., Landwehr, J.: Icicle plots: better displays for hierarchical clustering. Am. Stat. 37(2), 162–168 (1983)Google Scholar
  18. 18.
    Lin, C.C., Yen, H.C.: On balloon drawings of rooted trees. Graph Algorithms Appl. 11(2), 431–452 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  20. 20.
    Mandelbrot, B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1982)MATHGoogle Scholar
  21. 21.
    McGuffin, M., Robert, J.: Quantifying the space-efficiency of 2D graphical representations of trees. Inf. Vis. 9(2), 115–140 (2009)CrossRefGoogle Scholar
  22. 22.
    Nocaj, A., Brandes, U.: Computing voronoi treemaps: faster, simpler, and resolution-independent. Comput. Graph. Forum 31(3), 855–864 (2012)CrossRefGoogle Scholar
  23. 23.
    Peitgen, H.O., Saupe, D. (eds.): Science of Fractal Images. Springer, New York (1988) Google Scholar
  24. 24.
    Reingold, E., Tilford, J.: Tidier drawings of trees. IEEE Trans. Softw. Eng. 7, 223–228 (1981)CrossRefGoogle Scholar
  25. 25.
    Rosindell, J., Harmon, L.: OneZoom: a fractal explorer for the tree of life. PLOS Biol. 10(10), e1001406 (2012)CrossRefGoogle Scholar
  26. 26.
    Schulz, H.J.: Treevis.net: a tree visualization reference. IEEE Comput. Graph. Appl. 31(6), 11–15 (2011)CrossRefGoogle Scholar
  27. 27.
    Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graphics 11(1), 92–99 (1992)CrossRefMATHGoogle Scholar
  28. 28.
    Stasko, J.T., Zhang, E.: Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 57–65 (2000)Google Scholar
  29. 29.
    Ware, C.: Information Visualization, Second Edition: Perception for Design (Interactive Technologies), 2nd edn. Morgan Kaufmann, Burlington (2004) Google Scholar
  30. 30.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. II. Psychol. Res. 4(1), 301–350 (1923)CrossRefGoogle Scholar
  31. 31.
    Wetherell, C., Shannon, A.: Tidy drawings of trees. IEEE Trans. Soft. Eng. 5(5), 514–520 (1979)CrossRefMATHGoogle Scholar
  32. 32.
    Wilson, E.O.: Biophilia. Harvard University Press, Cambridge (1984) Google Scholar
  33. 33.
    Yang, J., Ward, M.O., Rundensteiner, E.A., Patro, A.: InterRing: a visual interface for navigating and manipulating hierarchies. Inf. Vis. 2(1), 16–30 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fabian Beck
    • 1
  • Michael Burch
    • 1
  • Tanja Munz
    • 1
  • Lorenzo Di Silvestro
    • 2
  • Daniel Weiskopf
    • 1
  1. 1.VISUSUniversity of StuttgartStuttgartGermany
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations