Age Estimation Using 3D Shape of the Face

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 550)

Abstract

The 3D shape of human faces deform with time and contain rich aging information. However, in the literature, no work has been done with the 3D shape of face for age estimation. Thus, we propose in this paper to explore the 3D facial surface in age estimation. Based on Riemannian shape analysis of facial curves, we extract four types of Dense Scalar Field (DSF) descriptions from the 3D facial surface, which reflect the face Averageness, face Symmetry, and the Spatial and Gradient deviations of the face. Experiments are carried out following the Leave-One-Person-Out (LOPO) cross-validation on the earliest 466 scans in FRGCv2 dataset, using the Random Forest Regressor. With the DSF features, the proposed approach achieves 3.29 years Mean Absolute Error (MAE) in the gender-general experiments, and 3.15 years MAE in the gender-specific experiments. Results confirm the idea that the face aging differs with gender. To address the high dimensionality of DSF features and the imbalance in training instances, we propose to use a weighted PCA method. In both the gender-general and gender-specific experiments, the age estimation performances using weighted PCA are comparable to the performances using the DSF descriptions. While, the size of feature is significantly smaller with the weighted PCA.

Keywords

Age estimation 3D face Dense scalar field Principal component analysis Random forest regression 

References

  1. 1.
    Criminisi, A., Shotton, J.: Regression forests. In: Criminisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical Image Analysis, pp. 49–58. Springer, Berlin (2013)CrossRefGoogle Scholar
  2. 2.
    Samal, A., Subramani, V., Marx, D.: Analysis of sexual dimorphism in the human face. J. Vis. Comp. Imag. Rep. 18, 453–463 (2007)CrossRefGoogle Scholar
  3. 3.
    Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. J. Pattern Anal. Mach. Intell. 11, 1955–1976 (2010). IEEEGoogle Scholar
  4. 4.
    Rhodes, M.G.: Age estimation of faces: a review. J. Appl. Cogn. Psyc. 23, 1–12 (2009)CrossRefGoogle Scholar
  5. 5.
    Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 112–119. IEEE (2009)Google Scholar
  6. 6.
    Han, H., Otto, C., Jain, A.K.: Age estimation from face images: human vs. machine performance. In: 6th International Conference on Biometrics, pp. 1–8 (2013)Google Scholar
  7. 7.
    Montillo, A., Ling, H.: Age regression from faces using random forests. In: 16th IEEE International Conference on Image Processing, pp. 2465–2468. IEEE (2009)Google Scholar
  8. 8.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 947–954. IEEE (2005)Google Scholar
  9. 9.
    Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. J. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011). IEEECrossRefGoogle Scholar
  10. 10.
    Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. J. Syst. Man Cybern. Part B: Cybern. 34, 621–628 (2004). IEEECrossRefGoogle Scholar
  11. 11.
    Ueki, K., Sugiyama, M., Ihara, Y.: Perceived age estimation under lighting condition change by covariate shift adaptation. In: 20th International Conference on Pattern Recognition, pp. 3400–3403. IEEE (2010)Google Scholar
  12. 12.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. J. Pattern Anal. Mach. Intell. 24, 442–455 (2002). IEEECrossRefGoogle Scholar
  13. 13.
    Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. J. Pattern Anal. Mach. Intell. 29, 2234–2240 (2007). IEEECrossRefGoogle Scholar
  14. 14.
    Ramanathan, N., Chellappa, R., Biswas, S.: Computational methods for modeling facial aging: a survey. J. Vis. Lang. Comp. 20, 131–144 (2009). ElsevierCrossRefGoogle Scholar
  15. 15.
    Albert, A.M., Ricanek, K., Patterson, E.: A review of the literature on the aging adult skull and face: implications for forensic science research and applications. J. Forensic Sci Int. 172, 1–9 (2007). ElsevierCrossRefGoogle Scholar
  16. 16.
    Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. J. Pattern Anal. Mach. Intell. 32, 947–954 (2010). IEEECrossRefGoogle Scholar
  17. 17.
    Guo, G., Fu, Y., Huang, T.S., Dyer, C.R.: Locally adjusted robust regression for human age estimation. In: IEEE Workshop on Applications of Computer Vision, pp. 1–6. IEEE (2008)Google Scholar
  18. 18.
    Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. J. Imag. Process. 17, 1178–1188 (2008). IEEEMathSciNetCrossRefGoogle Scholar
  19. 19.
    Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.H.: Learning from facial aging patterns for automatic age estimation. In: 14th Annual ACM International Conference on Multimedia, pp. 307–316. ACM (2006)Google Scholar
  20. 20.
    The Relationship Between Age and Facial Asymmetry. http://meeting.nesps.org/2011/80.cgi
  21. 21.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV’98. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  22. 22.
    N.S., L., J., B., Majumder, S.: Age estimation using gender information. In: Venugopal, K.R., Patnaik, L.M. (eds.) ICIP 2011. CCIS, vol. 157, pp. 211–216. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  23. 23.
    Chao, W.L. Liu, J.Z., Ding, J.J.: Facial age estimation based on label-sensitive learning and age-specific local regression. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1941–1944. IEEE (2012)Google Scholar
  24. 24.
    Suo, J.L., Zhu, S.C., Shan, S.G., Chen, X.L.: A compositional and dynamic model for face aging. J. Pattern Anal. Mach. Intell. 32, 385–401 (2010). IEEECrossRefGoogle Scholar
  25. 25.
    Tao, W., Turaga, P., Chellappa, R.: Age estimation and face verification across aging using landmarks. J. Info. Foren. Sec. 7, 1780–1788 (2012)CrossRefGoogle Scholar
  26. 26.
    Li, C.S., Liu, Q.S., Liu, J., Lu, H.Q.: Learning ordinal discriminative features for age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2570–2577. IEEE (2012)Google Scholar
  27. 27.
    Mark, L.S., Todd, J.T.: The perception of growth in three dimensions. J. Atten. Percep. Psycho. 33, 193–196 (1983). SpringerCrossRefGoogle Scholar
  28. 28.
    Bruce, V., Burton, M., Doyle, T., Dench, N.: Further experiments on the perception of growth in three dimensions. J. Percept. Psycho. 46, 528–536 (1989). SpringerCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Baiqiang Xia
    • 1
  • Boulbaba Ben Amor
    • 1
  • Mohamed Daoudi
    • 1
  1. 1.Télécom Lille/LIFL (UMR CNRS 8022)Cité ScientifiqueVilleneuve D’ascqFrance

Personalised recommendations