Advertisement

Subspace Nearest Neighbor Search - Problem Statement, Approaches, and Discussion

Position Paper
  • Michael Hund
  • Michael Behrisch
  • Ines Färber
  • Michael Sedlmair
  • Tobias Schreck
  • Thomas Seidl
  • Daniel Keim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9371)

Abstract

Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature spaces contain a large number of dimensions, many of which may contain noise, irrelevant, redundant, or contradicting information. More specifically, the relevance of dimensions may depend on the query object itself, and in general, different dimension sets (subspaces) may be appropriate for a query. Approaches for feature selection or -weighting typically provide a global subspace selection, which may not be suitable for all possibly queries. In this position paper, we frame a new research problem, called subspace nearest neighbor search, aiming at multiple query-dependent subspaces for nearest neighbor search. We describe relevant problem characteristics, relate to existing approaches, and outline potential research directions.

Keywords

Nearest neighbor search Subspace analysis and search Subspace clustering Subspace outlier detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE 17(6), 734–749 (2005)Google Scholar
  2. 2.
    Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Proc. 7th Int. Conf. Database Theory, pp. 217–235 (1999)Google Scholar
  3. 3.
    Camastra, F.: Data dimensionality estimation methods: a survey. Pattern Recognition 36(12), 2945–2954 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Information Visualization 10(4), 289–309 (2011)CrossRefGoogle Scholar
  5. 5.
    Hinneburg, A., Keim, D.A., Aggarwal, C.C.: What is the nearest neighbor in high dimensional spaces? In: Proc. 26th Int. Conf. on VLDB, Cairo, Egypt (2000)Google Scholar
  6. 6.
    Houle, M.E., Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Can shared-neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 482–500. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Houle, M.E., Ma, X., Oria, V., Sun, J.: Efficient algorithms for similarity search in axis-aligned subspaces. In: Traina, A.J.M., Traina Jr, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 1–12. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Kailing, K., Kriegel, H.-P., Kröger, P., Wanka, S.: Ranking interesting subspaces for clustering high dimensional data. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 241–252. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  9. 9.
    Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD 3(1), 1 (2009)CrossRefGoogle Scholar
  10. 10.
    Liu, H., Motoda, H.: Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC Press (2007)Google Scholar
  11. 11.
    Micenkova, B., Dang, X.H., Assent, I., Ng, R.: Explaining outliers by subspace separability. In: 13th. IEEE ICDM, pp. 518–527 (2013)Google Scholar
  12. 12.
    Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. In: VLDB, vol. 2, pp. 1270–1281 (2009)Google Scholar
  13. 13.
    Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining 5(5), 363–387 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Hund
    • 1
  • Michael Behrisch
    • 1
  • Ines Färber
    • 2
  • Michael Sedlmair
    • 3
  • Tobias Schreck
    • 4
  • Thomas Seidl
    • 2
  • Daniel Keim
    • 1
  1. 1.University of KonstanzKonstanzGermany
  2. 2.RWTH Aachen UniversityAachenGermany
  3. 3.University of ViennaWienAustria
  4. 4.Graz University of TechnologyGrazAustria

Personalised recommendations