Advertisement

WebGIS-Based Approach to Simulate Water and Solute Fluxes in the Miyun Basin in China

  • Ralph MeissnerEmail author
  • Michael Gebel
  • Jens Hagenau
  • Stefan Halbfass
  • Paul Engelke
  • Mathias Giessler
  • Shuhuai Duan
  • Bingjun Lu
  • Xiaoyan Wang
Chapter

Abstract

The Miyun reservoir, located approximately 100 km North-East of the Beijing municipality, is one of the main surface water supply sources for the 20 million people living in this metropolitan area. For a variety of anthropogenic and natural reasons the Miyun reservoir suffers from increasing water quantity and quality problems. Over the past 20 years the reservoir water level has declined by 10 m and the water quality status is classified as “mesotrophic” with a tendency to “eutrophic”. This means the water does not fulfil the requirements for use as drinking water. This book chapter describes the bottom-up research strategy for monitoring and modelling water and solute fluxes in the catchment as a basic precondition to establish sustainable management strategies. It focuses on the connection of hydrological investigations from plot to field via sub-catchment scale and meso-scale modelling in the Miyun catchment area with the STOFFBILANZ model. It is demonstrated how this model was adapted to the natural conditions of Northern China. Based on practical examples of land use change strategies and improvement of wastewater treatment the use of the model to calculate different scenarios to reduce non-point and point source pollution in the Miyun catchment area will be shown.

Keywords

Water protection Diffuse pollution Hydrological measuring system Lysimeter Modelling 

Notes

Acknowledgements

The study was funded by the German Federal Ministry of Education and Research (BMBF; FKZ 02WM1047, 02WM1048, 02WM1049). We would like to thank all colleagues from the Chinese and German partner institutions for their cooperation and support during the investigations. The intellectual content of the paper is the responsibility of the authors.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56Google Scholar
  2. Bethge-Steffens D, Meissner R, Rupp H (2004) Development and practical test of a weighable groundwater lysimeter for floodplain sites. J Plant Nutr Soil Sci 167(4):516–524CrossRefGoogle Scholar
  3. Chen T, Niu RQ, Li PX, Zhang LP, Du B (2010) Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed. North China Environ Earth Sci. doi: 10.1007/s12665-010-0715-z Google Scholar
  4. Chen T, Niu RQ, Wang Y, Li PX, Zhang LP, Du B (2011) Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques. Environ Monit Assess. doi: 10.1007/s10661-010-1766-z Google Scholar
  5. FAO/IIASA/ISRIC/ISS-CAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria. http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/. Accessed 11 Sep 2013
  6. Gebel M, Halbfass S, Bürger S, Uhlig M (2012a) STOFFBILANZ: Commentary of the STOFFBILANZ programme. http://galf-dresden.de/galf/wp-content/uploads/2013/06/Stoffbilanz_commentary.pdf. Accessed 11 Sep 2013
  7. Gebel M, Halbfass S, Bürger S, Lorz C (2012b) Long-term simulation of effects of energy crop cultivation on nitrogen leaching and surface water quality in Saxony/Germany. Reg Environ Change 13:249–261CrossRefGoogle Scholar
  8. Gebel M, Meissner R, Halbfass S, Hagenau J, Duan S (2014a) Web GIS-based simulation of water fluxes in the Miyun catchment area. iForest Biogeosci Fores. doi: 10.3832/ifor1169-007
  9. Gebel M, Uhlig M, Halbfass S, Meißner R, Duan S (2014b) Predicting erosion and sediment yield in a meso-scale basin in the semiarid mosoon region Miyun/China. Ecol Process 3:5. doi: 10.1186/2192-1709-3-5 CrossRefGoogle Scholar
  10. Halbfass S (2005) Entwicklung eines GIS-gestützten Modells zur Quantifizierung diffuser Phosphoreinträge in Oberflächengewässer im mittleren Maßstab unter Berücksichtigung geoökologisch wirksamer Raumstrukturen. Dissertation TU Dresden, Rhombos-Verlag, Bd. 1, BerlinGoogle Scholar
  11. Haq G, Cambridge H (2012) Exploiting the co-benefits of ecological sanitation. Curr Opin Environ Sustain 4(4):431–435CrossRefGoogle Scholar
  12. Hawkins RH, Ward TJ, Woodward DE, Van Mullem JA (2009) Curve number hydrology: state of the practice. American Society of Civil Engineers, RestonGoogle Scholar
  13. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  14. Jönsson H, Vinnerås B (2004) Adapting the nutrient content of urine and faeces in different countries using FAO and Swedish data. In: Ecosan: closing the loop. Proceedings of the 2nd international symposium on ecological sanitation, incorporating the 1st IWA specialist group conference on sustainable sanitation, 7th–11th April 2003, Lübeck, Germany, pp 623–626Google Scholar
  15. Kinnell PIA (2001) The USLE-M and modeling erosion within catchments. In: Stott, DE, Steinhardt GC (eds) Sustaining the global farm. Selected papers from the 10th International soil conservation organization on meeting held May 24–29, 1999 at Perdue University and the USDA-ARS National Soil Erosion Research LaboratoryGoogle Scholar
  16. Kirchmann H, Pettersson S (1995) Human urine: chemical composition and fertilizer efficiency. Fertil Res 40:149–154CrossRefGoogle Scholar
  17. Kröger C, Xu A, Duan S, Zhang B, Eckstädt H, Meissner R (2012) The situation of sanitary systems in rural areas in the Miyun catchment, China. Water Sci Technol 66(6):1178–1185CrossRefPubMedGoogle Scholar
  18. Ma H, Yang D, Tan SK, Gao B, Hu Q (2010) Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. J Hydrol 389:317–324CrossRefGoogle Scholar
  19. Malisie AF, Prihandrijanti M, Otterpohl R (2007) The potential of nutrient reuse from a source-separated domestic wastewater system in Indonesia–case study: ecological sanitation pilot plant in Surabaya. Water Sci Technol 56(5):141–148CrossRefPubMedGoogle Scholar
  20. Meissner R, Hagenau J (2013) Development and implementation of a scientific based management system for non-point source pollution control in the Miyun basin near Beijing/China. IWRM-Booklet BMBF 2013:27–29Google Scholar
  21. Meissner R, Seeger J, Rupp H, Seyfarth M, Borg H (2007) Measurement of dew, fog, and rime with a high-precision gravitation lysimeter. J Plant Nutr Soil Sci 170(3):335–344CrossRefGoogle Scholar
  22. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual 472 models part I. A discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  23. Ongley ED, Zhang X, Yu T (2010) Current status of agricultural and rural non-point source Pollution assessment in China. Environ Pollut 158:1159–1168CrossRefPubMedGoogle Scholar
  24. Ou Y, Wang X (2008) Identification of critical source areas for non-point source pollution in Miyun reservoir watershed near Beijing, China. Water Sci Technol 58(11):2235–2241CrossRefPubMedGoogle Scholar
  25. Stintzing AR, Rodhe L, Åkerhielm H (2001) Human urine as fertilizer—plant nutrients, application technique and environmental effects (In Swedish, English summary). JTI-Rapport Lantbruk & Industri 278, Swedish Institute of Agricultural and Environmental Engineering, SwedenGoogle Scholar
  26. UNEP (2008) Beijing 2008 Olympic Games: an environmental review. United Nations Environment Programme. Division of Communications and Public Information, Nairobi, Kenia, p 165. http://books.google.it/books?id=p0O6gU4_aa0C&pg=PP2&dq=unep+beijing&hl=de&sa=X&ei=-j-MU6aEKO6e7AbW8IGoBw&ved=CC8Q6AEwAA#v=onepage&q=unep%20beijing&f=false. Accessed 02 June 2014
  27. Veith TL (2002) Agricultural BMP placement for cost-effective pollution control at the watershed level. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VirginiaGoogle Scholar
  28. Voges J (1999) Empirisches Modell für die mittlere Maßstabsebene zur GIS-gestützten Bestimmung der Anbindung erosionsgefährdeter Ackerflächen an Fließgewässer, Dissertation Universität HannoverGoogle Scholar
  29. Wischmeyer WH, Smith DD (1978) Predicting rainfall losses: a guide to conservation planning. USDA Agriculture Handbook 537:1–58Google Scholar
  30. Xu ZX, Pang JP, Liu CM, Li JY (2009) Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrol Process 23:3619–3630CrossRefGoogle Scholar
  31. Yu B, Rosewell CJ (1996) A robust estimator of the R-factor for the universal loss equation. Am Soc Agric Eng 39(2):559–561CrossRefGoogle Scholar
  32. Zhang C, Tian H, Liu J, Wang S, Liu M, Pan S, Shi X (2005) Pools and distributions of soil phosphorus in China. Global Biogeochem Cycles. doi: 10.1029/2004GB002296 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ralph Meissner
    • 1
    Email author
  • Michael Gebel
    • 2
  • Jens Hagenau
    • 1
  • Stefan Halbfass
    • 2
  • Paul Engelke
    • 3
  • Mathias Giessler
    • 3
  • Shuhuai Duan
    • 4
  • Bingjun Lu
    • 4
  • Xiaoyan Wang
    • 5
  1. 1.Department of Soil PhysicsHelmholtz Centre for Environmental Research-UFZAltmaerkische WischeGermany
  2. 2.Society for Applied Landscape Research (GALF) bRDresdenGermany
  3. 3.Rostock University, Institute of Environmental EngineeringRostockGermany
  4. 4.Beijing Soil and Water Conservation Center (BWA)BeijingChina
  5. 5.College of Resources, Environment and TourismCapital Normal UniversityBeijingChina

Personalised recommendations