Advertisement

Evaluation of Different Static Trajectories for the Localization of Users in a Mixed Indoor-Outdoor Scenario Using a Real Unmanned Aerial Vehicle

  • Oleksandr ArtemenkoEmail author
  • Alina Rubina
  • Tobias Simon
  • Andreas Mitschele-Thiel
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 155)

Abstract

This paper focuses on the experimental exploration of static trajectories applied for the localization of wireless nodes using unmanned aerial vehicles. Furthermore, a unique scenario is investigated that includes both indoor and outdoor areas. While moving around a building, an unmanned aerial vehicle localizes wireless nodes that are positioned inside that building.

First, a classification of up-to-date static trajectories is provided. Later on, an adaptation of several state-of-the-art static trajectories is presented. The latter include the so called Triangle and Circle trajectories which are investigated in real-world experiments using a single unmanned aerial vehicle serving as a mobile anchor. The experimental data is used to validate the trajectories. Experimental results show that Triangle is better suited for our unique indoor-outdoor scenario.

Keywords

Localization Static trajectories Mobile beacon Disaster Unmanned aerial vehicle Experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artemenko, O., Rubina, A., Golokolenko, O., Simon, T., Römisch, J., Mitschele-Thiel, A.: Validation and evaluation of the chosen path planning algorithm for localization of nodes using an unmanned aerial vehicle in disaster scenarios. In: Mitton, N., Papavassiliou, S., Kantarci, M.E., Gallais, A. (eds.) ADHOCNETS 2014, LNICST, vol. 140, pp. 192–203. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Artemenko, O., Simon, T., Mitschele-Thiel, A., Schulz, D., Ta, M.R.S.: Comparison of anchor selection algorithms for improvement of position estimation during the wi-fi localization process in disaster scenario. In: The 37th IEEE Conference on Local Computer Networks (LCN), October 2012Google Scholar
  3. 3.
    Benkhelifa, I., Moussaoui, S.: Appl: Anchor path planning based localization for wireless sensor networks. In: The 4th International Conference on Communications, Computers and Applications (MIC-CCA 2011), pp. 48–53. Mosharaka for Researches and Studies (2011)Google Scholar
  4. 4.
    Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)CrossRefGoogle Scholar
  5. 5.
    Chang, C.-Y., Chang, C.-Y., Lin, C.-Y.: Anchor-guiding mechanism for beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal 12(5), 1098–1111 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cheng, L., Wu, C., Zhang, Y., Wu, H., Li, M., Maple, C.: A survey of localization in wireless sensor network. In: IJDSN (2012)Google Scholar
  7. 7.
    Cui, H., Wang, Y., Lv, J.: Path planning of mobile anchor in three-dimensional wireless sensor networks for localization. J. Inf. Comput. Sci. 9, 2203–2210 (2012)Google Scholar
  8. 8.
    Faria, D.B.: Modeling Signal Attenuation in IEEE 802.11 Wireless LANs - Vol. 1. Technical Report TR-KP06-0118, Kiwi Project, Stanford University, January 2006Google Scholar
  9. 9.
    Farmani, M., Moradi, H., Dehghan, S.M.M., Asadpour, M.: The modified hilbert path for mobile-beacon-based localization in wireless sensor networks. Transactions of the Institute of Measurement and Control (2013)Google Scholar
  10. 10.
    Han, G., Zhang, C., Lloret, J., Shu, L., Rodrigues, J.J.: A mobile anchor assisted localization algorithm based on regular hexagon in wireless sensor networks. The Scientific World Journal 13 (2014)Google Scholar
  11. 11.
    Huang, R., Zaruba, G.V.: Static path planning for mobile beacons to localize sensor networks. In: PerCom Workshops, pp. 323–330. IEEE Computer Society (2007)Google Scholar
  12. 12.
    Jiang, J., Han, G., Xu, H., Shu, L., Guizani, M.: Lmat: Localization with a mobile anchor node based on trilateration in wireless sensor networks. In: GLOBECOM, pp. 1–6. IEEE (2011)Google Scholar
  13. 13.
    Kim, K., Jung, B., Lee, W., Du, D.-Z.: Adaptive path planning for randomly deployed wireless sensor networks. J. Inf. Sci. Eng. 27(3), 1091–1106 (2011)Google Scholar
  14. 14.
    Koubaa, A., Khelil, A.: Mobility-assisted localization techniques in wireless sensor networks: Issues, challenges and approaches. In: Koubâa, A., Khelil, A. (eds.) Cooperative Robots and Sensor Networks 2014. SCI, vol. 554, pp. 43–64. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Koutsonikolas, D., Das, S.M., Hu, Y.C.: Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications 30(13), 2577–2592 (2007)CrossRefGoogle Scholar
  16. 16.
    Li, X., Mitton, N., Simplot-Ryl, I., Simplot-Ryl, D.: Dynamic beacon mobility scheduling for sensor localization. IEEE Transactions on Parallel and Distributed Systems 23(8), 1439–1452 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Mesmoudi, A., Feham, M., Labraoui, N.: Wireless sensor networks localization algorithms: a comprehensive survey. CoRR, abs/1312.4082 (2013)Google Scholar
  18. 18.
    Mondal, K., Karmakar, A., Mandal, P.S.: Designing path planning algorithms for mobile anchor towards range-free localization. CoRR, abs/1409.0085 (2014)Google Scholar
  19. 19.
    Ou, C.-H., He, W.-L.: Path planning algorithm for mobile anchor-based localization in wireless sensor networks. IEEE Sensors Journal 13(2), 466–475 (2013)CrossRefGoogle Scholar
  20. 20.
    Rezazadeh, J., Moradi, M., Ismail, A., Dutkiewicz, E.: Impact of static trajectories on localization in wireless sensor networks. Wireless Networks, 1–19 (2014)Google Scholar
  21. 21.
    Rezazadeh, J., Moradi, M., Ismail, A., Dutkiewicz, E.: Superior path planning mechanism for mobile beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal 14(9), 3052–3064 (2014)CrossRefGoogle Scholar

Copyright information

© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2015

Authors and Affiliations

  • Oleksandr Artemenko
    • 1
    Email author
  • Alina Rubina
    • 1
  • Tobias Simon
    • 1
  • Andreas Mitschele-Thiel
    • 1
  1. 1.Integrated Communication Systems GroupTechnische Universität IlmenauIlmenauGermany

Personalised recommendations