Role of Lipogenesis and Lipid Desaturases in Non-alcoholic Fatty Liver Disease

  • Mohamed Amine Lounis
  • Sabri Rial
  • James M. Ntambi
  • Catherine MounierEmail author


Non-alcoholic fatty liver disease (NAFLD) is a clinico-pathological change characterized by the accumulation of triacylglycerol (TG) in hepatic lipid droplets (LD). NAFLD can range from a simple steatosis to Non-alcoholic steatohepatitis (NASH) characterized by hepatic injury, inflammation, and eventually fibrosis. NAFLD can also be associated with insulin resistance (IR), ER stress, oxidative stress and inflammation. The cause of NAFLD is due to modification of various metabolic pathways including increased fatty acid (FA) uptake and/or reduced FA oxidation, decreased VLDL secretion and increased de novo lipogenesis (DNL). NAFLD is often observed in obese patients where energy is in excess and energy expenditure is low. In these conditions, most of carbohydrates are converted into TG through DNL. We aim here to present the most recent studies demonstrating the key role of DNL in NAFLD development. A special focus will be made on desaturases especially the stearoyl CoA desaturase 1, a central enzyme implicated in fatty liver disease as well as on the delta 5 and delta 6 desaturases, two enzymes involved in the synthesis of omega 3 and omega 6 fatty acids.


Non-alcoholic fatty liver disease (NAFLD) Hepatic steatosis Insulin resistance Lipogenesis Lipid droplet Stearoyl CoA desaturase 1 (SCD1) Delta 5 desaturase Delta 6 desaturase 


  1. Abu-Elheiga L, Oh W, Kordari P, Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A 100:10207–10212PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahn SB, Jang K, Jun DW, Lee BH, Shin KJ (2014) Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Dig Dis Sci 59:2975–2982PubMedCrossRefGoogle Scholar
  3. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism 63:895–902PubMedCrossRefGoogle Scholar
  4. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231PubMedCrossRefGoogle Scholar
  5. Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J (2004) Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 106:635–643CrossRefGoogle Scholar
  6. Araya J, Rodrigo R, Pettinelli P, Araya AV, Poniachik J, Videla LA (2010) Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity (Silver Spring) 18:1460–1463CrossRefGoogle Scholar
  7. Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP (2010) PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–532PubMedCrossRefGoogle Scholar
  8. Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122:2176–2194PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T (2014) Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol 7:221–239PubMedPubMedCentralGoogle Scholar
  10. Bitter A, Nussler AK, Thasler WE, Klein K, Zanger UM, Schwab M, Burk O (2015) Human sterol regulatory element-binding protein 1a contributes significantly to hepatic lipogenic gene expression. Cell Physiol Biochem 35:803–815PubMedCrossRefGoogle Scholar
  11. Boden G, Song W, Duan X, Cheung P, Kresge K, Barrero C, Merali S (2011) Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver. Obesity (Silver Spring) 19:1366–1373CrossRefGoogle Scholar
  12. Brasaemle DL, Wolins NE (2012) Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 287:2273–2279PubMedCrossRefGoogle Scholar
  13. Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen T, Zhu X, Duong MN, Wibley AL, Shah R, Davis MA, Kelley K, Wilson MD, Kent C, Parks JS, Rudel LL (2008) Inhibition of stearoyl-coenzyme A desaturase 1 dissociates insulin resistance and obesity from atherosclerosis. Circulation 118:1467–1475PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buhman KK, Chen HC, Farese RV Jr (2001) The enzymes of neutral lipid synthesis. J Biol Chem 276:40369–40372PubMedCrossRefGoogle Scholar
  15. Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q, Chen J, Cheng WH, Shen W, Yang ZX (2012) Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 364:115–129PubMedCrossRefGoogle Scholar
  16. Capanni M, Calella F, Biagini MR, Genise S, Raimondi L, Bedogni G, Svegliati-Baroni G, Sofi F, Milani S, Abbate R, Surrenti C, Casini A (2006) Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study. Aliment Pharmacol Ther 23:1143–1151PubMedCrossRefGoogle Scholar
  17. Caviglia JM, Gayet C, Ota T, Hernandez-Ono A, Conlon DM, Jiang H, Fisher EA, Ginsberg HN (2011) Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res 52:1636–1651PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1:309–322PubMedCrossRefGoogle Scholar
  19. Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15:585–594PubMedCrossRefGoogle Scholar
  20. Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI (2007) Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282:22678–22688PubMedCrossRefGoogle Scholar
  21. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523PubMedPubMedCentralCrossRefGoogle Scholar
  22. Coleman RA, Mashek DG (2011) Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 111:6359–6386PubMedPubMedCentralCrossRefGoogle Scholar
  23. Crespo J, Cayon A, Fernandez-Gil P, Hernandez-Guerra M, Mayorga M, Dominguez-Diez A, Fernandez-Escalante JC, Pons-Romero F (2001) Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34:1158–1163PubMedCrossRefGoogle Scholar
  24. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845PubMedCrossRefGoogle Scholar
  25. Dentin R, Benhamed F, Pegorier JP, Foufelle F, Viollet B, Vaulont S, Girard J, Postic C (2005) Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 115:2843–2854PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, Girard J, Postic C (2006) Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55:2159–2170PubMedCrossRefGoogle Scholar
  27. Diraison F, Moulin P, Beylot M (2003) Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab 29:478–485PubMedCrossRefGoogle Scholar
  28. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dorn C, Riener MO, Kirovski G, Saugspier M, Steib K, Weiss TS, Gabele E, Kristiansen G, Hartmann A, Hellerbrand C (2010) Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol 3:505–514PubMedPubMedCentralGoogle Scholar
  30. Ducheix S, Montagner A, Theodorou V, Ferrier L, Guillou H (2013) The liver X receptor: a master regulator of the gut-liver axis and a target for non alcoholic fatty liver disease. Biochem Pharmacol 86:96–105PubMedCrossRefGoogle Scholar
  31. Endo M, Masaki T, Seike M, Yoshimatsu H (2007) TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood) 232:614–621Google Scholar
  32. Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51:679–689PubMedPubMedCentralCrossRefGoogle Scholar
  33. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C.-T. Cell 139:855–860PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fatima A, Waters S, O’Boyle P, Seoighe C, Morris DG (2014) Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle. BMC Genomics 15:28PubMedPubMedCentralCrossRefGoogle Scholar
  35. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792PubMedCrossRefGoogle Scholar
  36. Flowers MT, Ntambi JM (2008) Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 19:248–256PubMedPubMedCentralCrossRefGoogle Scholar
  37. Frangioudakis G, Burchfield JG, Narasimhan S, Cooney GJ, Leitges M, Biden TJ, Schmitz-Peiffer C (2009) Diverse roles for protein kinase C delta and protein kinase C epsilon in the generation of high-fat-diet-induced glucose intolerance in mice: regulation of lipogenesis by protein kinase C delta. Diabetologia 52:2616–2620PubMedCrossRefGoogle Scholar
  38. Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D (2004) The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab 30:121–138PubMedCrossRefGoogle Scholar
  39. Fu S, Watkins SM, Hotamisligil GS (2012) The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 15:623–634PubMedCrossRefGoogle Scholar
  40. Fujii H, Ikura Y, Arimoto J, Sugioka K, Iezzoni JC, Park SH, Naruko T, Itabe H, Kawada N, Caldwell SH, Ueda M (2009) Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J Atheroscler Thromb 16:893–901PubMedCrossRefGoogle Scholar
  41. Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC, Kahn M, Guigni BA, Serr J, Zhang D, Bhanot S, Samuel VT, Shulman GI (2013) Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci U S A 110:12780–12785PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gormaz JG, Rodrigo R, Videla LA, Beems M (2010) Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Prog Lipid Res 49:407–419PubMedCrossRefGoogle Scholar
  43. Griffett K, Solt LA, El-Gendy Bel D, Kamenecka TM, Burris TP (2013) A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem Biol 8:559–567PubMedCrossRefGoogle Scholar
  44. Guo Y, Cordes KR, Farese RV Jr, Walther TC (2009) Lipid droplets at a glance. J Cell Sci 122:749–752PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS (2001) Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem 276:4365–4372PubMedCrossRefGoogle Scholar
  46. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, Kotoh K, Nakamuta M, Takayanagi R, Enjoji M (2008) Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 38:1122–1129PubMedCrossRefGoogle Scholar
  47. Hooper AJ, Adams LA, Burnett JR (2011) Genetic determinants of hepatic steatosis in man. J Lipid Res 52:593–617PubMedPubMedCentralCrossRefGoogle Scholar
  48. Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T (2005) Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun 336:215–222PubMedCrossRefGoogle Scholar
  49. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–2437PubMedCrossRefGoogle Scholar
  50. Jacquier N, Mishra S, Choudhary V, Schneiter R (2013) Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J Cell Sci 126:5198–5209PubMedCrossRefGoogle Scholar
  51. Kantartzis K, Machicao F, Machann J, Schick F, Fritsche A, Haring HU, Stefan N (2009) The DGAT2 gene is a candidate for the dissociation between fatty liver and insulin resistance in humans. Clin Sci (Lond) 116:531–537CrossRefGoogle Scholar
  52. Kanuri G, Bergheim I (2013) In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 14:11963–11980PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kaplowitz N, Ji C (2006) Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. J Gastroenterol Hepatol 21(Suppl 3):S7–S9PubMedCrossRefGoogle Scholar
  54. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kessler SM, Simon Y, Gemperlein K, Gianmoena K, Cadenas C, Zimmer V, Pokorny J, Barghash A, Helms V, VAN Rooijen N, Bohle RM, Lammert F, Hengstler JG, Mueller R, Haybaeck J, Kiemer AK (2014) Fatty acid elongation in non-alcoholic steatohepatitis and hepatocellular carcinoma. Int J Mol Sci 15:5762–5773PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358PubMedGoogle Scholar
  57. Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat—store ’em up or burn ’em down. Genetics 193:1–50PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kotronen A, Seppanen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepaa AL, Oresic M, Yki-Jarvinen H (2009) Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58:203–208PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–735PubMedCrossRefGoogle Scholar
  60. Larter CZ, Yeh MM, Williams J, Bell-Anderson KS, Farrell GC (2008) MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J Hepatol 49:407–416PubMedCrossRefGoogle Scholar
  61. Lee JJ, Lambert JE, Hovhannisyan Y, Ramos-Roman MA, Trombold JR, Wagner DA, Parks EJ (2015) Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am J Clin Nutr 101:34–43PubMedCrossRefGoogle Scholar
  62. Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5:1301–1315PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li Z, Diehl AM (2003) Innate immunity in the liver. Curr Opin Gastroenterol 19:565–571PubMedCrossRefGoogle Scholar
  64. Li ZZ, Berk M, McIntyre TM, Feldstein AE (2009) Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284:5637–5644PubMedPubMedCentralCrossRefGoogle Scholar
  65. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100:3077–3082PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lodhi IJ, Wei X, Semenkovich CF (2011) Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab 22:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  67. Long AP, Manneschmidt AK, Verbrugge B, Dortch MR, Minkin SC, Prater KE, Biggerstaff JP, Dunlap JR, Dalhaimer P (2012) Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic 13:705–714PubMedCrossRefGoogle Scholar
  68. Lopez-Vicario C, Gonzalez-Periz A, Rius B, Moran-Salvador E, Garcia-Alonso V, Lozano JJ, Bataller R, Cofan M, Kang JX, Arroyo V, Claria J, Titos E (2014) Molecular interplay between Delta5/Delta6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut 63:344–355PubMedCrossRefGoogle Scholar
  69. Mao J, Demayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, Kordari P, Chirala SS, Heird WC, Wakil SJ (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 103:8552–8557PubMedPubMedCentralCrossRefGoogle Scholar
  70. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378PubMedCrossRefGoogle Scholar
  71. Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ (2008) Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 7:302–311PubMedPubMedCentralCrossRefGoogle Scholar
  72. Matsuzaka T, Shimano H (2011) Molecular mechanisms involved in hepatic steatosis and insulin resistance. J Diabetes Investig 2:170–175PubMedPubMedCentralCrossRefGoogle Scholar
  73. Matsuzaka T, Atsumi A, Matsumori R, Nie T, Shinozaki H, Suzuki-Kemuriyama N, Kuba M, Nakagawa Y, Ishii K, Shimada M, Kobayashi K, Yatoh S, Takahashi A, Takekoshi K, Sone H, Yahagi N, Suzuki H, Murata S, Nakamuta M, Yamada N, Shimano H (2012) Elovl6 promotes nonalcoholic steatohepatitis. Hepatology 56:2199–2208PubMedCrossRefGoogle Scholar
  74. Mauvoisin D, Mounier C (2011) Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93:78–86PubMedCrossRefGoogle Scholar
  75. Milic S, Stimac D (2012) Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Dig Dis 30:158–162PubMedCrossRefGoogle Scholar
  76. Miyazaki M, Kim YC, Ntambi JM (2001) A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res 42:1018–1024PubMedGoogle Scholar
  77. Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, Ntambi JM (2004) Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 279:25164–25171PubMedCrossRefGoogle Scholar
  78. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496PubMedCrossRefGoogle Scholar
  79. Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD (2001) Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276:45358–45366PubMedCrossRefGoogle Scholar
  80. Moon YA, Ochoa CR, Mitsche MA, Hammer RE, Horton JD (2014) Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J Lipid Res 55:2597–2605PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moore JB, Gunn PJ, Fielding BA (2014) The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 6:5679–5703PubMedPubMedCentralCrossRefGoogle Scholar
  82. Motomura W, Inoue M, Ohtake T, Takahashi N, Nagamine M, Tanno S, Kohgo Y, Okumura T (2006) Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun 340:1111–1118PubMedCrossRefGoogle Scholar
  83. Musso G, Gambino R, Cassader M, Pagano G (2011) Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 43:617–649PubMedCrossRefGoogle Scholar
  84. Nagaya T, Tanaka N, Suzuki T, Sano K, Horiuchi A, Komatsu M, Nakajima T, Nishizawa T, Joshita S, Umemura T, Ichijo T, Matsumoto A, Yoshizawa K, Nakayama J, Tanaka E, Aoyama T (2010) Down-regulation of SREBP-1c is associated with the development of burned-out NASH. J Hepatol 53:724–731PubMedCrossRefGoogle Scholar
  85. Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376PubMedCrossRefGoogle Scholar
  86. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37:1202–1219PubMedCrossRefGoogle Scholar
  87. Nobili V, Alisi A, Della Corte C, Rise P, Galli C, Agostoni C, Bedogni G (2013) Docosahexaenoic acid for the treatment of fatty liver: randomised controlled trial in children. Nutr Metab Cardiovasc Dis 23:1066–1070PubMedCrossRefGoogle Scholar
  88. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 99:11482–11486PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nye CK, Hanson RW, Kalhan SC (2008) Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J Biol Chem 283:27565–27574PubMedPubMedCentralCrossRefGoogle Scholar
  90. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7:496–507PubMedPubMedCentralCrossRefGoogle Scholar
  91. Peter A, Cegan A, Wagner S, Elcnerova M, Konigsrainer A, Konigsrainer I, Haring HU, Schleicher ED, Stefan N (2011) Relationships between hepatic stearoyl-CoA desaturase-1 activity and mRNA expression with liver fat content in humans. Am J Physiol Endocrinol Metab 300:E321–E326PubMedCrossRefGoogle Scholar
  92. Petersson H, Arnlov J, Zethelius B, Riserus U (2010) Serum fatty acid composition and insulin resistance are independently associated with liver fat markers in elderly men. Diabetes Res Clin Pract 87:379–384PubMedCrossRefGoogle Scholar
  93. Pettinelli P, del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Korn O, Maluenda F, Diaz JC, Rencoret G, Braghetto I, Castillo J, Poniachik J, Videla LA (2009) Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta 1792:1080–1086PubMedCrossRefGoogle Scholar
  94. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838PubMedPubMedCentralCrossRefGoogle Scholar
  95. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, Sanyal AJ (2008) Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134:568–576PubMedCrossRefGoogle Scholar
  96. Robertson G, Leclercq I, Farrell GC (2001) Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 281:G1135–G1139PubMedGoogle Scholar
  97. Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52:59–69PubMedCrossRefGoogle Scholar
  98. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sampath H, Ntambi JM (2006) Stearoyl-coenzyme A desaturase 1, sterol regulatory element binding protein-1c and peroxisome proliferator-activated receptor-alpha: independent and interactive roles in the regulation of lipid metabolism. Curr Opin Clin Nutr Metab Care 9:84–88PubMedCrossRefGoogle Scholar
  100. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279:32345–32353PubMedCrossRefGoogle Scholar
  101. Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI (2007) Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745PubMedPubMedCentralCrossRefGoogle Scholar
  102. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277PubMedPubMedCentralCrossRefGoogle Scholar
  103. Shen L, Cui A, Xue Y, Cui Y, Dong X, Gao Y, Yang H, Fang F, Chang Y (2014) Hepatic differentiated embryo-chondrocyte-expressed gene 1 (Dec1) inhibits sterol regulatory element-binding protein-1c (Srebp-1c) expression and alleviates fatty liver phenotype. J Biol Chem 289:23332–23342PubMedPubMedCentralCrossRefGoogle Scholar
  104. Silbernagel G, Kovarova M, Cegan A, Machann J, Schick F, Lehmann R, Haring HU, Stefan N, Schleicher E, Fritsche A, Peter A (2012) High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Clin Endocrinol Metab 97:E2288–E2292PubMedCrossRefGoogle Scholar
  105. Sim WC, Park S, Lee KY, Je YT, Yin HQ, Choi YJ, Sung SH, Park SJ, Park HJ, Shin KJ, Lee BH (2014) LXR-alpha antagonist meso-dihydroguaiaretic acid attenuates high-fat diet-induced nonalcoholic fatty liver. Biochem Pharmacol 90:414–424PubMedCrossRefGoogle Scholar
  106. Spadaro L, Magliocco O, Spampinato D, Piro S, Oliveri C, Alagona C, Papa G, Rabuazzo AM, Purrello F (2008) Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig Liver Dis 40:194–199PubMedCrossRefGoogle Scholar
  107. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, Gudnason V, Eiriksdottir G, Garcia ME, Launer LJ, Nalls MA, Clark JM, Mitchell BD, Shuldiner AR, Butler JL, Tomas M, Hoffmann U, Hwang SJ, Massaro JM, O’Donnell CJ, Sahani DV, Salomaa V, Schadt EE, Schwartz SM, Siscovick DS, Voight BF, Carr JJ, Feitosa MF, Harris TB, Fox CS, Smith AV, Kao WH, Hirschhorn JN, Borecki IB (2011) Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7:e1001324PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stefan N, Haring HU (2011) The metabolically benign and malignant fatty liver. Diabetes 60:2011–2017PubMedPubMedCentralCrossRefGoogle Scholar
  109. Stefan N, Peter A, Cegan A, Staiger H, Machann J, Schick F, Claussen CD, Fritsche A, Haring HU, Schleicher E (2008) Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia 51:648–656PubMedCrossRefGoogle Scholar
  110. St-Jules DE, Watters CA, Brunt EM, Wilkens LR, Novotny R, Belt P, Lavine JE (2013) Estimation of fish and omega-3 fatty acid intake in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 57:627–633PubMedPubMedCentralCrossRefGoogle Scholar
  111. Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214PubMedPubMedCentralCrossRefGoogle Scholar
  112. Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P (2008) Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47:1936–1946PubMedCrossRefGoogle Scholar
  113. Teli MR, James OF, Burt AD, Bennett MK, Day CP (1995) The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology 22:1714–1719PubMedCrossRefGoogle Scholar
  114. Tovar AR, Torre-Villalvazo I, Ochoa M, Elias AL, Ortiz V, Aguilar-Salinas CA, Torres N (2005) Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats. J Lipid Res 46:1823–1832PubMedCrossRefGoogle Scholar
  115. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A (2002) Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad Sci 967:183–195PubMedCrossRefGoogle Scholar
  117. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275–E281PubMedCrossRefGoogle Scholar
  118. Wilfling F, Haas JT, Walther TC, Farese RV Jr (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wu T, Liu YH, Fu YC, Liu XM, Zhou XH (2014) Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients. Ann Clin Lab Sci 44:410–418PubMedGoogle Scholar
  120. Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, Amemiya-Kudo M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Nagai R, Ishibashi S, Yamada N (2002) Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem 277:19353–19357PubMedCrossRefGoogle Scholar
  121. Yamada M, Wolfe D, Han G, French SW, Ross MG, Desai M (2011) Early onset of fatty liver in growth-restricted rat fetuses and newborns. Congenit Anom (Kyoto) 51:167–173CrossRefGoogle Scholar
  122. Yamada K, Mizukoshi E, Sunagozaka H, Arai K, Yamashita T, Takeshita Y, Misu H, Takamura T, Kitamura S, Zen Y, Nakanuma Y, Honda M, Kaneko S (2015) Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int 35:582–590PubMedCrossRefGoogle Scholar
  123. Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S, Bukhari A, Suzuki H, Senda S, Imanishi S, Hirata K, Ishiki M, Hayashi R, Urakaze M, Nemoto H, Kobayashi M, Tobe K (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol Endocrinol Metab 297:E1179–E1186PubMedCrossRefGoogle Scholar
  124. Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2:901–910PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohamed Amine Lounis
    • 1
  • Sabri Rial
    • 1
  • James M. Ntambi
    • 2
    • 3
  • Catherine Mounier
    • 1
    Email author
  1. 1.Département des Sciences BiologiquesCentre de recherche BioMed, Université du Québec à MontréalMontréalCanada
  2. 2.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Nutritional SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations